This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Integer property expressed in terms of positive integers and nonnegative integers. (Contributed by NM, 12-Jul-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elznn | ⊢ ( 𝑁 ∈ ℤ ↔ ( 𝑁 ∈ ℝ ∧ ( 𝑁 ∈ ℕ ∨ - 𝑁 ∈ ℕ0 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elz | ⊢ ( 𝑁 ∈ ℤ ↔ ( 𝑁 ∈ ℝ ∧ ( 𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ - 𝑁 ∈ ℕ ) ) ) | |
| 2 | 3orrot | ⊢ ( ( 𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ - 𝑁 ∈ ℕ ) ↔ ( 𝑁 ∈ ℕ ∨ - 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) | |
| 3 | 3orass | ⊢ ( ( 𝑁 ∈ ℕ ∨ - 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ↔ ( 𝑁 ∈ ℕ ∨ ( - 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) ) | |
| 4 | 2 3 | bitri | ⊢ ( ( 𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ - 𝑁 ∈ ℕ ) ↔ ( 𝑁 ∈ ℕ ∨ ( - 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) ) |
| 5 | elnn0 | ⊢ ( - 𝑁 ∈ ℕ0 ↔ ( - 𝑁 ∈ ℕ ∨ - 𝑁 = 0 ) ) | |
| 6 | recn | ⊢ ( 𝑁 ∈ ℝ → 𝑁 ∈ ℂ ) | |
| 7 | 6 | negeq0d | ⊢ ( 𝑁 ∈ ℝ → ( 𝑁 = 0 ↔ - 𝑁 = 0 ) ) |
| 8 | 7 | orbi2d | ⊢ ( 𝑁 ∈ ℝ → ( ( - 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ↔ ( - 𝑁 ∈ ℕ ∨ - 𝑁 = 0 ) ) ) |
| 9 | 5 8 | bitr4id | ⊢ ( 𝑁 ∈ ℝ → ( - 𝑁 ∈ ℕ0 ↔ ( - 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) ) |
| 10 | 9 | orbi2d | ⊢ ( 𝑁 ∈ ℝ → ( ( 𝑁 ∈ ℕ ∨ - 𝑁 ∈ ℕ0 ) ↔ ( 𝑁 ∈ ℕ ∨ ( - 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) ) ) |
| 11 | 4 10 | bitr4id | ⊢ ( 𝑁 ∈ ℝ → ( ( 𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ - 𝑁 ∈ ℕ ) ↔ ( 𝑁 ∈ ℕ ∨ - 𝑁 ∈ ℕ0 ) ) ) |
| 12 | 11 | pm5.32i | ⊢ ( ( 𝑁 ∈ ℝ ∧ ( 𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ - 𝑁 ∈ ℕ ) ) ↔ ( 𝑁 ∈ ℝ ∧ ( 𝑁 ∈ ℕ ∨ - 𝑁 ∈ ℕ0 ) ) ) |
| 13 | 1 12 | bitri | ⊢ ( 𝑁 ∈ ℤ ↔ ( 𝑁 ∈ ℝ ∧ ( 𝑁 ∈ ℕ ∨ - 𝑁 ∈ ℕ0 ) ) ) |