This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An integer is less than or equal to its square. (Contributed by BJ, 6-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | zzlesq | |- ( N e. ZZ -> N <_ ( N ^ 2 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elznn | |- ( N e. ZZ <-> ( N e. RR /\ ( N e. NN \/ -u N e. NN0 ) ) ) |
|
| 2 | animorrl | |- ( ( N e. RR /\ N e. NN ) -> ( N e. NN \/ ( N e. RR /\ -u N e. NN0 ) ) ) |
|
| 3 | olc | |- ( ( N e. RR /\ -u N e. NN0 ) -> ( N e. NN \/ ( N e. RR /\ -u N e. NN0 ) ) ) |
|
| 4 | 2 3 | jaodan | |- ( ( N e. RR /\ ( N e. NN \/ -u N e. NN0 ) ) -> ( N e. NN \/ ( N e. RR /\ -u N e. NN0 ) ) ) |
| 5 | 1 4 | sylbi | |- ( N e. ZZ -> ( N e. NN \/ ( N e. RR /\ -u N e. NN0 ) ) ) |
| 6 | nnlesq | |- ( N e. NN -> N <_ ( N ^ 2 ) ) |
|
| 7 | simpl | |- ( ( N e. RR /\ -u N e. NN0 ) -> N e. RR ) |
|
| 8 | 0red | |- ( ( N e. RR /\ -u N e. NN0 ) -> 0 e. RR ) |
|
| 9 | 7 | resqcld | |- ( ( N e. RR /\ -u N e. NN0 ) -> ( N ^ 2 ) e. RR ) |
| 10 | nn0ge0 | |- ( -u N e. NN0 -> 0 <_ -u N ) |
|
| 11 | le0neg1 | |- ( N e. RR -> ( N <_ 0 <-> 0 <_ -u N ) ) |
|
| 12 | 11 | biimpar | |- ( ( N e. RR /\ 0 <_ -u N ) -> N <_ 0 ) |
| 13 | 10 12 | sylan2 | |- ( ( N e. RR /\ -u N e. NN0 ) -> N <_ 0 ) |
| 14 | 7 | sqge0d | |- ( ( N e. RR /\ -u N e. NN0 ) -> 0 <_ ( N ^ 2 ) ) |
| 15 | 7 8 9 13 14 | letrd | |- ( ( N e. RR /\ -u N e. NN0 ) -> N <_ ( N ^ 2 ) ) |
| 16 | 6 15 | jaoi | |- ( ( N e. NN \/ ( N e. RR /\ -u N e. NN0 ) ) -> N <_ ( N ^ 2 ) ) |
| 17 | 5 16 | syl | |- ( N e. ZZ -> N <_ ( N ^ 2 ) ) |