This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A positive integer is less than or equal to its square. For general integers, see zzlesq . (Contributed by NM, 15-Sep-1999) (Revised by Mario Carneiro, 12-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nnlesq | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ≤ ( 𝑁 ↑ 2 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nncn | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℂ ) | |
| 2 | 1 | mulridd | ⊢ ( 𝑁 ∈ ℕ → ( 𝑁 · 1 ) = 𝑁 ) |
| 3 | nnge1 | ⊢ ( 𝑁 ∈ ℕ → 1 ≤ 𝑁 ) | |
| 4 | 1red | ⊢ ( 𝑁 ∈ ℕ → 1 ∈ ℝ ) | |
| 5 | nnre | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℝ ) | |
| 6 | nngt0 | ⊢ ( 𝑁 ∈ ℕ → 0 < 𝑁 ) | |
| 7 | lemul2 | ⊢ ( ( 1 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ ( 𝑁 ∈ ℝ ∧ 0 < 𝑁 ) ) → ( 1 ≤ 𝑁 ↔ ( 𝑁 · 1 ) ≤ ( 𝑁 · 𝑁 ) ) ) | |
| 8 | 4 5 5 6 7 | syl112anc | ⊢ ( 𝑁 ∈ ℕ → ( 1 ≤ 𝑁 ↔ ( 𝑁 · 1 ) ≤ ( 𝑁 · 𝑁 ) ) ) |
| 9 | 3 8 | mpbid | ⊢ ( 𝑁 ∈ ℕ → ( 𝑁 · 1 ) ≤ ( 𝑁 · 𝑁 ) ) |
| 10 | 2 9 | eqbrtrrd | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ≤ ( 𝑁 · 𝑁 ) ) |
| 11 | sqval | ⊢ ( 𝑁 ∈ ℂ → ( 𝑁 ↑ 2 ) = ( 𝑁 · 𝑁 ) ) | |
| 12 | 1 11 | syl | ⊢ ( 𝑁 ∈ ℕ → ( 𝑁 ↑ 2 ) = ( 𝑁 · 𝑁 ) ) |
| 13 | 10 12 | breqtrrd | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ≤ ( 𝑁 ↑ 2 ) ) |