This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The integers are a cyclic group. (Contributed by Mario Carneiro, 21-Apr-2016) (Revised by AV, 9-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | zringcyg | ⊢ ℤring ∈ CycGrp |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zringbas | ⊢ ℤ = ( Base ‘ ℤring ) | |
| 2 | eqid | ⊢ ( .g ‘ ℤring ) = ( .g ‘ ℤring ) | |
| 3 | zsubrg | ⊢ ℤ ∈ ( SubRing ‘ ℂfld ) | |
| 4 | subrgsubg | ⊢ ( ℤ ∈ ( SubRing ‘ ℂfld ) → ℤ ∈ ( SubGrp ‘ ℂfld ) ) | |
| 5 | 3 4 | ax-mp | ⊢ ℤ ∈ ( SubGrp ‘ ℂfld ) |
| 6 | df-zring | ⊢ ℤring = ( ℂfld ↾s ℤ ) | |
| 7 | 6 | subggrp | ⊢ ( ℤ ∈ ( SubGrp ‘ ℂfld ) → ℤring ∈ Grp ) |
| 8 | 5 7 | mp1i | ⊢ ( ⊤ → ℤring ∈ Grp ) |
| 9 | 1zzd | ⊢ ( ⊤ → 1 ∈ ℤ ) | |
| 10 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 11 | cnfldmulg | ⊢ ( ( 𝑥 ∈ ℤ ∧ 1 ∈ ℂ ) → ( 𝑥 ( .g ‘ ℂfld ) 1 ) = ( 𝑥 · 1 ) ) | |
| 12 | 10 11 | mpan2 | ⊢ ( 𝑥 ∈ ℤ → ( 𝑥 ( .g ‘ ℂfld ) 1 ) = ( 𝑥 · 1 ) ) |
| 13 | 1z | ⊢ 1 ∈ ℤ | |
| 14 | eqid | ⊢ ( .g ‘ ℂfld ) = ( .g ‘ ℂfld ) | |
| 15 | 14 6 2 | subgmulg | ⊢ ( ( ℤ ∈ ( SubGrp ‘ ℂfld ) ∧ 𝑥 ∈ ℤ ∧ 1 ∈ ℤ ) → ( 𝑥 ( .g ‘ ℂfld ) 1 ) = ( 𝑥 ( .g ‘ ℤring ) 1 ) ) |
| 16 | 5 13 15 | mp3an13 | ⊢ ( 𝑥 ∈ ℤ → ( 𝑥 ( .g ‘ ℂfld ) 1 ) = ( 𝑥 ( .g ‘ ℤring ) 1 ) ) |
| 17 | zcn | ⊢ ( 𝑥 ∈ ℤ → 𝑥 ∈ ℂ ) | |
| 18 | 17 | mulridd | ⊢ ( 𝑥 ∈ ℤ → ( 𝑥 · 1 ) = 𝑥 ) |
| 19 | 12 16 18 | 3eqtr3rd | ⊢ ( 𝑥 ∈ ℤ → 𝑥 = ( 𝑥 ( .g ‘ ℤring ) 1 ) ) |
| 20 | oveq1 | ⊢ ( 𝑧 = 𝑥 → ( 𝑧 ( .g ‘ ℤring ) 1 ) = ( 𝑥 ( .g ‘ ℤring ) 1 ) ) | |
| 21 | 20 | rspceeqv | ⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑥 = ( 𝑥 ( .g ‘ ℤring ) 1 ) ) → ∃ 𝑧 ∈ ℤ 𝑥 = ( 𝑧 ( .g ‘ ℤring ) 1 ) ) |
| 22 | 19 21 | mpdan | ⊢ ( 𝑥 ∈ ℤ → ∃ 𝑧 ∈ ℤ 𝑥 = ( 𝑧 ( .g ‘ ℤring ) 1 ) ) |
| 23 | 22 | adantl | ⊢ ( ( ⊤ ∧ 𝑥 ∈ ℤ ) → ∃ 𝑧 ∈ ℤ 𝑥 = ( 𝑧 ( .g ‘ ℤring ) 1 ) ) |
| 24 | 1 2 8 9 23 | iscygd | ⊢ ( ⊤ → ℤring ∈ CycGrp ) |
| 25 | 24 | mptru | ⊢ ℤring ∈ CycGrp |