This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The integers are a cyclic group. (Contributed by Mario Carneiro, 21-Apr-2016) (Revised by AV, 9-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | zringcyg | |- ZZring e. CycGrp |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zringbas | |- ZZ = ( Base ` ZZring ) |
|
| 2 | eqid | |- ( .g ` ZZring ) = ( .g ` ZZring ) |
|
| 3 | zsubrg | |- ZZ e. ( SubRing ` CCfld ) |
|
| 4 | subrgsubg | |- ( ZZ e. ( SubRing ` CCfld ) -> ZZ e. ( SubGrp ` CCfld ) ) |
|
| 5 | 3 4 | ax-mp | |- ZZ e. ( SubGrp ` CCfld ) |
| 6 | df-zring | |- ZZring = ( CCfld |`s ZZ ) |
|
| 7 | 6 | subggrp | |- ( ZZ e. ( SubGrp ` CCfld ) -> ZZring e. Grp ) |
| 8 | 5 7 | mp1i | |- ( T. -> ZZring e. Grp ) |
| 9 | 1zzd | |- ( T. -> 1 e. ZZ ) |
|
| 10 | ax-1cn | |- 1 e. CC |
|
| 11 | cnfldmulg | |- ( ( x e. ZZ /\ 1 e. CC ) -> ( x ( .g ` CCfld ) 1 ) = ( x x. 1 ) ) |
|
| 12 | 10 11 | mpan2 | |- ( x e. ZZ -> ( x ( .g ` CCfld ) 1 ) = ( x x. 1 ) ) |
| 13 | 1z | |- 1 e. ZZ |
|
| 14 | eqid | |- ( .g ` CCfld ) = ( .g ` CCfld ) |
|
| 15 | 14 6 2 | subgmulg | |- ( ( ZZ e. ( SubGrp ` CCfld ) /\ x e. ZZ /\ 1 e. ZZ ) -> ( x ( .g ` CCfld ) 1 ) = ( x ( .g ` ZZring ) 1 ) ) |
| 16 | 5 13 15 | mp3an13 | |- ( x e. ZZ -> ( x ( .g ` CCfld ) 1 ) = ( x ( .g ` ZZring ) 1 ) ) |
| 17 | zcn | |- ( x e. ZZ -> x e. CC ) |
|
| 18 | 17 | mulridd | |- ( x e. ZZ -> ( x x. 1 ) = x ) |
| 19 | 12 16 18 | 3eqtr3rd | |- ( x e. ZZ -> x = ( x ( .g ` ZZring ) 1 ) ) |
| 20 | oveq1 | |- ( z = x -> ( z ( .g ` ZZring ) 1 ) = ( x ( .g ` ZZring ) 1 ) ) |
|
| 21 | 20 | rspceeqv | |- ( ( x e. ZZ /\ x = ( x ( .g ` ZZring ) 1 ) ) -> E. z e. ZZ x = ( z ( .g ` ZZring ) 1 ) ) |
| 22 | 19 21 | mpdan | |- ( x e. ZZ -> E. z e. ZZ x = ( z ( .g ` ZZring ) 1 ) ) |
| 23 | 22 | adantl | |- ( ( T. /\ x e. ZZ ) -> E. z e. ZZ x = ( z ( .g ` ZZring ) 1 ) ) |
| 24 | 1 2 8 9 23 | iscygd | |- ( T. -> ZZring e. CycGrp ) |
| 25 | 24 | mptru | |- ZZring e. CycGrp |