This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership of an integer increased by a nonnegative integer in a half- open integer range. (Contributed by Alexander van der Vekens, 22-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | zpnn0elfzo | ⊢ ( ( 𝑍 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) → ( 𝑍 + 𝑁 ) ∈ ( 𝑍 ..^ ( ( 𝑍 + 𝑁 ) + 1 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uzid | ⊢ ( 𝑍 ∈ ℤ → 𝑍 ∈ ( ℤ≥ ‘ 𝑍 ) ) | |
| 2 | 1 | anim1i | ⊢ ( ( 𝑍 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) → ( 𝑍 ∈ ( ℤ≥ ‘ 𝑍 ) ∧ 𝑁 ∈ ℕ0 ) ) |
| 3 | nn0z | ⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ ) | |
| 4 | zaddcl | ⊢ ( ( 𝑍 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑍 + 𝑁 ) ∈ ℤ ) | |
| 5 | 3 4 | sylan2 | ⊢ ( ( 𝑍 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) → ( 𝑍 + 𝑁 ) ∈ ℤ ) |
| 6 | elfzomin | ⊢ ( ( 𝑍 + 𝑁 ) ∈ ℤ → ( 𝑍 + 𝑁 ) ∈ ( ( 𝑍 + 𝑁 ) ..^ ( ( 𝑍 + 𝑁 ) + 1 ) ) ) | |
| 7 | 5 6 | syl | ⊢ ( ( 𝑍 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) → ( 𝑍 + 𝑁 ) ∈ ( ( 𝑍 + 𝑁 ) ..^ ( ( 𝑍 + 𝑁 ) + 1 ) ) ) |
| 8 | uzaddcl | ⊢ ( ( 𝑍 ∈ ( ℤ≥ ‘ 𝑍 ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝑍 + 𝑁 ) ∈ ( ℤ≥ ‘ 𝑍 ) ) | |
| 9 | fzoss1 | ⊢ ( ( 𝑍 + 𝑁 ) ∈ ( ℤ≥ ‘ 𝑍 ) → ( ( 𝑍 + 𝑁 ) ..^ ( ( 𝑍 + 𝑁 ) + 1 ) ) ⊆ ( 𝑍 ..^ ( ( 𝑍 + 𝑁 ) + 1 ) ) ) | |
| 10 | 8 9 | syl | ⊢ ( ( 𝑍 ∈ ( ℤ≥ ‘ 𝑍 ) ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝑍 + 𝑁 ) ..^ ( ( 𝑍 + 𝑁 ) + 1 ) ) ⊆ ( 𝑍 ..^ ( ( 𝑍 + 𝑁 ) + 1 ) ) ) |
| 11 | 10 | sselda | ⊢ ( ( ( 𝑍 ∈ ( ℤ≥ ‘ 𝑍 ) ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑍 + 𝑁 ) ∈ ( ( 𝑍 + 𝑁 ) ..^ ( ( 𝑍 + 𝑁 ) + 1 ) ) ) → ( 𝑍 + 𝑁 ) ∈ ( 𝑍 ..^ ( ( 𝑍 + 𝑁 ) + 1 ) ) ) |
| 12 | 2 7 11 | syl2anc | ⊢ ( ( 𝑍 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) → ( 𝑍 + 𝑁 ) ∈ ( 𝑍 ..^ ( ( 𝑍 + 𝑁 ) + 1 ) ) ) |