This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership of an integer increased by a nonnegative integer in a half- open integer range. (Contributed by Alexander van der Vekens, 22-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | zpnn0elfzo | |- ( ( Z e. ZZ /\ N e. NN0 ) -> ( Z + N ) e. ( Z ..^ ( ( Z + N ) + 1 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uzid | |- ( Z e. ZZ -> Z e. ( ZZ>= ` Z ) ) |
|
| 2 | 1 | anim1i | |- ( ( Z e. ZZ /\ N e. NN0 ) -> ( Z e. ( ZZ>= ` Z ) /\ N e. NN0 ) ) |
| 3 | nn0z | |- ( N e. NN0 -> N e. ZZ ) |
|
| 4 | zaddcl | |- ( ( Z e. ZZ /\ N e. ZZ ) -> ( Z + N ) e. ZZ ) |
|
| 5 | 3 4 | sylan2 | |- ( ( Z e. ZZ /\ N e. NN0 ) -> ( Z + N ) e. ZZ ) |
| 6 | elfzomin | |- ( ( Z + N ) e. ZZ -> ( Z + N ) e. ( ( Z + N ) ..^ ( ( Z + N ) + 1 ) ) ) |
|
| 7 | 5 6 | syl | |- ( ( Z e. ZZ /\ N e. NN0 ) -> ( Z + N ) e. ( ( Z + N ) ..^ ( ( Z + N ) + 1 ) ) ) |
| 8 | uzaddcl | |- ( ( Z e. ( ZZ>= ` Z ) /\ N e. NN0 ) -> ( Z + N ) e. ( ZZ>= ` Z ) ) |
|
| 9 | fzoss1 | |- ( ( Z + N ) e. ( ZZ>= ` Z ) -> ( ( Z + N ) ..^ ( ( Z + N ) + 1 ) ) C_ ( Z ..^ ( ( Z + N ) + 1 ) ) ) |
|
| 10 | 8 9 | syl | |- ( ( Z e. ( ZZ>= ` Z ) /\ N e. NN0 ) -> ( ( Z + N ) ..^ ( ( Z + N ) + 1 ) ) C_ ( Z ..^ ( ( Z + N ) + 1 ) ) ) |
| 11 | 10 | sselda | |- ( ( ( Z e. ( ZZ>= ` Z ) /\ N e. NN0 ) /\ ( Z + N ) e. ( ( Z + N ) ..^ ( ( Z + N ) + 1 ) ) ) -> ( Z + N ) e. ( Z ..^ ( ( Z + N ) + 1 ) ) ) |
| 12 | 2 7 11 | syl2anc | |- ( ( Z e. ZZ /\ N e. NN0 ) -> ( Z + N ) e. ( Z ..^ ( ( Z + N ) + 1 ) ) ) |