This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership of an integer increased by a nonnegative integer in a half- open integer range. (Contributed by Alexander van der Vekens, 22-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | zpnn0elfzo1 | ⊢ ( ( 𝑍 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) → ( 𝑍 + 𝑁 ) ∈ ( 𝑍 ..^ ( 𝑍 + ( 𝑁 + 1 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zpnn0elfzo | ⊢ ( ( 𝑍 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) → ( 𝑍 + 𝑁 ) ∈ ( 𝑍 ..^ ( ( 𝑍 + 𝑁 ) + 1 ) ) ) | |
| 2 | zcn | ⊢ ( 𝑍 ∈ ℤ → 𝑍 ∈ ℂ ) | |
| 3 | 2 | adantr | ⊢ ( ( 𝑍 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) → 𝑍 ∈ ℂ ) |
| 4 | nn0cn | ⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℂ ) | |
| 5 | 4 | adantl | ⊢ ( ( 𝑍 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) → 𝑁 ∈ ℂ ) |
| 6 | 1cnd | ⊢ ( ( 𝑍 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) → 1 ∈ ℂ ) | |
| 7 | 3 5 6 | addassd | ⊢ ( ( 𝑍 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝑍 + 𝑁 ) + 1 ) = ( 𝑍 + ( 𝑁 + 1 ) ) ) |
| 8 | 7 | oveq2d | ⊢ ( ( 𝑍 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) → ( 𝑍 ..^ ( ( 𝑍 + 𝑁 ) + 1 ) ) = ( 𝑍 ..^ ( 𝑍 + ( 𝑁 + 1 ) ) ) ) |
| 9 | 1 8 | eleqtrd | ⊢ ( ( 𝑍 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) → ( 𝑍 + 𝑁 ) ∈ ( 𝑍 ..^ ( 𝑍 + ( 𝑁 + 1 ) ) ) ) |