This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for zorn2 . (Contributed by NM, 3-Apr-1997) (Revised by Mario Carneiro, 9-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | zorn2lem.3 | ⊢ 𝐹 = recs ( ( 𝑓 ∈ V ↦ ( ℩ 𝑣 ∈ 𝐶 ∀ 𝑢 ∈ 𝐶 ¬ 𝑢 𝑤 𝑣 ) ) ) | |
| zorn2lem.4 | ⊢ 𝐶 = { 𝑧 ∈ 𝐴 ∣ ∀ 𝑔 ∈ ran 𝑓 𝑔 𝑅 𝑧 } | ||
| zorn2lem.5 | ⊢ 𝐷 = { 𝑧 ∈ 𝐴 ∣ ∀ 𝑔 ∈ ( 𝐹 “ 𝑥 ) 𝑔 𝑅 𝑧 } | ||
| Assertion | zorn2lem3 | ⊢ ( ( 𝑅 Po 𝐴 ∧ ( 𝑥 ∈ On ∧ ( 𝑤 We 𝐴 ∧ 𝐷 ≠ ∅ ) ) ) → ( 𝑦 ∈ 𝑥 → ¬ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zorn2lem.3 | ⊢ 𝐹 = recs ( ( 𝑓 ∈ V ↦ ( ℩ 𝑣 ∈ 𝐶 ∀ 𝑢 ∈ 𝐶 ¬ 𝑢 𝑤 𝑣 ) ) ) | |
| 2 | zorn2lem.4 | ⊢ 𝐶 = { 𝑧 ∈ 𝐴 ∣ ∀ 𝑔 ∈ ran 𝑓 𝑔 𝑅 𝑧 } | |
| 3 | zorn2lem.5 | ⊢ 𝐷 = { 𝑧 ∈ 𝐴 ∣ ∀ 𝑔 ∈ ( 𝐹 “ 𝑥 ) 𝑔 𝑅 𝑧 } | |
| 4 | 1 2 3 | zorn2lem2 | ⊢ ( ( 𝑥 ∈ On ∧ ( 𝑤 We 𝐴 ∧ 𝐷 ≠ ∅ ) ) → ( 𝑦 ∈ 𝑥 → ( 𝐹 ‘ 𝑦 ) 𝑅 ( 𝐹 ‘ 𝑥 ) ) ) |
| 5 | 4 | adantl | ⊢ ( ( 𝑅 Po 𝐴 ∧ ( 𝑥 ∈ On ∧ ( 𝑤 We 𝐴 ∧ 𝐷 ≠ ∅ ) ) ) → ( 𝑦 ∈ 𝑥 → ( 𝐹 ‘ 𝑦 ) 𝑅 ( 𝐹 ‘ 𝑥 ) ) ) |
| 6 | 3 | ssrab3 | ⊢ 𝐷 ⊆ 𝐴 |
| 7 | 1 2 3 | zorn2lem1 | ⊢ ( ( 𝑥 ∈ On ∧ ( 𝑤 We 𝐴 ∧ 𝐷 ≠ ∅ ) ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝐷 ) |
| 8 | 6 7 | sselid | ⊢ ( ( 𝑥 ∈ On ∧ ( 𝑤 We 𝐴 ∧ 𝐷 ≠ ∅ ) ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝐴 ) |
| 9 | breq1 | ⊢ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐹 ‘ 𝑥 ) ↔ ( 𝐹 ‘ 𝑦 ) 𝑅 ( 𝐹 ‘ 𝑥 ) ) ) | |
| 10 | 9 | biimprcd | ⊢ ( ( 𝐹 ‘ 𝑦 ) 𝑅 ( 𝐹 ‘ 𝑥 ) → ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐹 ‘ 𝑥 ) ) ) |
| 11 | poirr | ⊢ ( ( 𝑅 Po 𝐴 ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝐴 ) → ¬ ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐹 ‘ 𝑥 ) ) | |
| 12 | 10 11 | nsyli | ⊢ ( ( 𝐹 ‘ 𝑦 ) 𝑅 ( 𝐹 ‘ 𝑥 ) → ( ( 𝑅 Po 𝐴 ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝐴 ) → ¬ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) |
| 13 | 12 | com12 | ⊢ ( ( 𝑅 Po 𝐴 ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑦 ) 𝑅 ( 𝐹 ‘ 𝑥 ) → ¬ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) |
| 14 | 8 13 | sylan2 | ⊢ ( ( 𝑅 Po 𝐴 ∧ ( 𝑥 ∈ On ∧ ( 𝑤 We 𝐴 ∧ 𝐷 ≠ ∅ ) ) ) → ( ( 𝐹 ‘ 𝑦 ) 𝑅 ( 𝐹 ‘ 𝑥 ) → ¬ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) |
| 15 | 5 14 | syld | ⊢ ( ( 𝑅 Po 𝐴 ∧ ( 𝑥 ∈ On ∧ ( 𝑤 We 𝐴 ∧ 𝐷 ≠ ∅ ) ) ) → ( 𝑦 ∈ 𝑥 → ¬ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) |