This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The ZZ ring homomorphism maps elements to their equivalence classes. (Contributed by Mario Carneiro, 15-Jun-2015) (Revised by AV, 13-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | znzrh2.s | ⊢ 𝑆 = ( RSpan ‘ ℤring ) | |
| znzrh2.r | ⊢ ∼ = ( ℤring ~QG ( 𝑆 ‘ { 𝑁 } ) ) | ||
| znzrh2.y | ⊢ 𝑌 = ( ℤ/nℤ ‘ 𝑁 ) | ||
| znzrh2.2 | ⊢ 𝐿 = ( ℤRHom ‘ 𝑌 ) | ||
| Assertion | znzrh2 | ⊢ ( 𝑁 ∈ ℕ0 → 𝐿 = ( 𝑥 ∈ ℤ ↦ [ 𝑥 ] ∼ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | znzrh2.s | ⊢ 𝑆 = ( RSpan ‘ ℤring ) | |
| 2 | znzrh2.r | ⊢ ∼ = ( ℤring ~QG ( 𝑆 ‘ { 𝑁 } ) ) | |
| 3 | znzrh2.y | ⊢ 𝑌 = ( ℤ/nℤ ‘ 𝑁 ) | |
| 4 | znzrh2.2 | ⊢ 𝐿 = ( ℤRHom ‘ 𝑌 ) | |
| 5 | zringring | ⊢ ℤring ∈ Ring | |
| 6 | nn0z | ⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ ) | |
| 7 | 1 | znlidl | ⊢ ( 𝑁 ∈ ℤ → ( 𝑆 ‘ { 𝑁 } ) ∈ ( LIdeal ‘ ℤring ) ) |
| 8 | 6 7 | syl | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝑆 ‘ { 𝑁 } ) ∈ ( LIdeal ‘ ℤring ) ) |
| 9 | 2 | oveq2i | ⊢ ( ℤring /s ∼ ) = ( ℤring /s ( ℤring ~QG ( 𝑆 ‘ { 𝑁 } ) ) ) |
| 10 | zringcrng | ⊢ ℤring ∈ CRing | |
| 11 | eqid | ⊢ ( LIdeal ‘ ℤring ) = ( LIdeal ‘ ℤring ) | |
| 12 | 11 | crng2idl | ⊢ ( ℤring ∈ CRing → ( LIdeal ‘ ℤring ) = ( 2Ideal ‘ ℤring ) ) |
| 13 | 10 12 | ax-mp | ⊢ ( LIdeal ‘ ℤring ) = ( 2Ideal ‘ ℤring ) |
| 14 | zringbas | ⊢ ℤ = ( Base ‘ ℤring ) | |
| 15 | eceq2 | ⊢ ( ∼ = ( ℤring ~QG ( 𝑆 ‘ { 𝑁 } ) ) → [ 𝑥 ] ∼ = [ 𝑥 ] ( ℤring ~QG ( 𝑆 ‘ { 𝑁 } ) ) ) | |
| 16 | 2 15 | ax-mp | ⊢ [ 𝑥 ] ∼ = [ 𝑥 ] ( ℤring ~QG ( 𝑆 ‘ { 𝑁 } ) ) |
| 17 | 16 | mpteq2i | ⊢ ( 𝑥 ∈ ℤ ↦ [ 𝑥 ] ∼ ) = ( 𝑥 ∈ ℤ ↦ [ 𝑥 ] ( ℤring ~QG ( 𝑆 ‘ { 𝑁 } ) ) ) |
| 18 | 9 13 14 17 | qusrhm | ⊢ ( ( ℤring ∈ Ring ∧ ( 𝑆 ‘ { 𝑁 } ) ∈ ( LIdeal ‘ ℤring ) ) → ( 𝑥 ∈ ℤ ↦ [ 𝑥 ] ∼ ) ∈ ( ℤring RingHom ( ℤring /s ∼ ) ) ) |
| 19 | 5 8 18 | sylancr | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝑥 ∈ ℤ ↦ [ 𝑥 ] ∼ ) ∈ ( ℤring RingHom ( ℤring /s ∼ ) ) ) |
| 20 | 1 9 | zncrng2 | ⊢ ( 𝑁 ∈ ℤ → ( ℤring /s ∼ ) ∈ CRing ) |
| 21 | crngring | ⊢ ( ( ℤring /s ∼ ) ∈ CRing → ( ℤring /s ∼ ) ∈ Ring ) | |
| 22 | eqid | ⊢ ( ℤRHom ‘ ( ℤring /s ∼ ) ) = ( ℤRHom ‘ ( ℤring /s ∼ ) ) | |
| 23 | 22 | zrhrhmb | ⊢ ( ( ℤring /s ∼ ) ∈ Ring → ( ( 𝑥 ∈ ℤ ↦ [ 𝑥 ] ∼ ) ∈ ( ℤring RingHom ( ℤring /s ∼ ) ) ↔ ( 𝑥 ∈ ℤ ↦ [ 𝑥 ] ∼ ) = ( ℤRHom ‘ ( ℤring /s ∼ ) ) ) ) |
| 24 | 6 20 21 23 | 4syl | ⊢ ( 𝑁 ∈ ℕ0 → ( ( 𝑥 ∈ ℤ ↦ [ 𝑥 ] ∼ ) ∈ ( ℤring RingHom ( ℤring /s ∼ ) ) ↔ ( 𝑥 ∈ ℤ ↦ [ 𝑥 ] ∼ ) = ( ℤRHom ‘ ( ℤring /s ∼ ) ) ) ) |
| 25 | 19 24 | mpbid | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝑥 ∈ ℤ ↦ [ 𝑥 ] ∼ ) = ( ℤRHom ‘ ( ℤring /s ∼ ) ) ) |
| 26 | 1 9 3 | znzrh | ⊢ ( 𝑁 ∈ ℕ0 → ( ℤRHom ‘ ( ℤring /s ∼ ) ) = ( ℤRHom ‘ 𝑌 ) ) |
| 27 | 25 26 | eqtr2d | ⊢ ( 𝑁 ∈ ℕ0 → ( ℤRHom ‘ 𝑌 ) = ( 𝑥 ∈ ℤ ↦ [ 𝑥 ] ∼ ) ) |
| 28 | 4 27 | eqtrid | ⊢ ( 𝑁 ∈ ℕ0 → 𝐿 = ( 𝑥 ∈ ℤ ↦ [ 𝑥 ] ∼ ) ) |