This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The base set of Z/nZ structure. (Contributed by Mario Carneiro, 15-Jun-2015) (Revised by AV, 13-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | znbas.s | ⊢ 𝑆 = ( RSpan ‘ ℤring ) | |
| znbas.y | ⊢ 𝑌 = ( ℤ/nℤ ‘ 𝑁 ) | ||
| znbas.r | ⊢ 𝑅 = ( ℤring ~QG ( 𝑆 ‘ { 𝑁 } ) ) | ||
| Assertion | znbas | ⊢ ( 𝑁 ∈ ℕ0 → ( ℤ / 𝑅 ) = ( Base ‘ 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | znbas.s | ⊢ 𝑆 = ( RSpan ‘ ℤring ) | |
| 2 | znbas.y | ⊢ 𝑌 = ( ℤ/nℤ ‘ 𝑁 ) | |
| 3 | znbas.r | ⊢ 𝑅 = ( ℤring ~QG ( 𝑆 ‘ { 𝑁 } ) ) | |
| 4 | eqidd | ⊢ ( 𝑁 ∈ ℕ0 → ( ℤring /s 𝑅 ) = ( ℤring /s 𝑅 ) ) | |
| 5 | zringbas | ⊢ ℤ = ( Base ‘ ℤring ) | |
| 6 | 5 | a1i | ⊢ ( 𝑁 ∈ ℕ0 → ℤ = ( Base ‘ ℤring ) ) |
| 7 | 3 | ovexi | ⊢ 𝑅 ∈ V |
| 8 | 7 | a1i | ⊢ ( 𝑁 ∈ ℕ0 → 𝑅 ∈ V ) |
| 9 | zringring | ⊢ ℤring ∈ Ring | |
| 10 | 9 | a1i | ⊢ ( 𝑁 ∈ ℕ0 → ℤring ∈ Ring ) |
| 11 | 4 6 8 10 | qusbas | ⊢ ( 𝑁 ∈ ℕ0 → ( ℤ / 𝑅 ) = ( Base ‘ ( ℤring /s 𝑅 ) ) ) |
| 12 | 3 | oveq2i | ⊢ ( ℤring /s 𝑅 ) = ( ℤring /s ( ℤring ~QG ( 𝑆 ‘ { 𝑁 } ) ) ) |
| 13 | 1 12 2 | znbas2 | ⊢ ( 𝑁 ∈ ℕ0 → ( Base ‘ ( ℤring /s 𝑅 ) ) = ( Base ‘ 𝑌 ) ) |
| 14 | 11 13 | eqtrd | ⊢ ( 𝑁 ∈ ℕ0 → ( ℤ / 𝑅 ) = ( Base ‘ 𝑌 ) ) |