This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The ZZ ring homomorphism maps elements to their equivalence classes. (Contributed by Mario Carneiro, 15-Jun-2015) (Revised by AV, 13-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | znzrh2.s | |- S = ( RSpan ` ZZring ) |
|
| znzrh2.r | |- .~ = ( ZZring ~QG ( S ` { N } ) ) |
||
| znzrh2.y | |- Y = ( Z/nZ ` N ) |
||
| znzrh2.2 | |- L = ( ZRHom ` Y ) |
||
| Assertion | znzrh2 | |- ( N e. NN0 -> L = ( x e. ZZ |-> [ x ] .~ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | znzrh2.s | |- S = ( RSpan ` ZZring ) |
|
| 2 | znzrh2.r | |- .~ = ( ZZring ~QG ( S ` { N } ) ) |
|
| 3 | znzrh2.y | |- Y = ( Z/nZ ` N ) |
|
| 4 | znzrh2.2 | |- L = ( ZRHom ` Y ) |
|
| 5 | zringring | |- ZZring e. Ring |
|
| 6 | nn0z | |- ( N e. NN0 -> N e. ZZ ) |
|
| 7 | 1 | znlidl | |- ( N e. ZZ -> ( S ` { N } ) e. ( LIdeal ` ZZring ) ) |
| 8 | 6 7 | syl | |- ( N e. NN0 -> ( S ` { N } ) e. ( LIdeal ` ZZring ) ) |
| 9 | 2 | oveq2i | |- ( ZZring /s .~ ) = ( ZZring /s ( ZZring ~QG ( S ` { N } ) ) ) |
| 10 | zringcrng | |- ZZring e. CRing |
|
| 11 | eqid | |- ( LIdeal ` ZZring ) = ( LIdeal ` ZZring ) |
|
| 12 | 11 | crng2idl | |- ( ZZring e. CRing -> ( LIdeal ` ZZring ) = ( 2Ideal ` ZZring ) ) |
| 13 | 10 12 | ax-mp | |- ( LIdeal ` ZZring ) = ( 2Ideal ` ZZring ) |
| 14 | zringbas | |- ZZ = ( Base ` ZZring ) |
|
| 15 | eceq2 | |- ( .~ = ( ZZring ~QG ( S ` { N } ) ) -> [ x ] .~ = [ x ] ( ZZring ~QG ( S ` { N } ) ) ) |
|
| 16 | 2 15 | ax-mp | |- [ x ] .~ = [ x ] ( ZZring ~QG ( S ` { N } ) ) |
| 17 | 16 | mpteq2i | |- ( x e. ZZ |-> [ x ] .~ ) = ( x e. ZZ |-> [ x ] ( ZZring ~QG ( S ` { N } ) ) ) |
| 18 | 9 13 14 17 | qusrhm | |- ( ( ZZring e. Ring /\ ( S ` { N } ) e. ( LIdeal ` ZZring ) ) -> ( x e. ZZ |-> [ x ] .~ ) e. ( ZZring RingHom ( ZZring /s .~ ) ) ) |
| 19 | 5 8 18 | sylancr | |- ( N e. NN0 -> ( x e. ZZ |-> [ x ] .~ ) e. ( ZZring RingHom ( ZZring /s .~ ) ) ) |
| 20 | 1 9 | zncrng2 | |- ( N e. ZZ -> ( ZZring /s .~ ) e. CRing ) |
| 21 | crngring | |- ( ( ZZring /s .~ ) e. CRing -> ( ZZring /s .~ ) e. Ring ) |
|
| 22 | eqid | |- ( ZRHom ` ( ZZring /s .~ ) ) = ( ZRHom ` ( ZZring /s .~ ) ) |
|
| 23 | 22 | zrhrhmb | |- ( ( ZZring /s .~ ) e. Ring -> ( ( x e. ZZ |-> [ x ] .~ ) e. ( ZZring RingHom ( ZZring /s .~ ) ) <-> ( x e. ZZ |-> [ x ] .~ ) = ( ZRHom ` ( ZZring /s .~ ) ) ) ) |
| 24 | 6 20 21 23 | 4syl | |- ( N e. NN0 -> ( ( x e. ZZ |-> [ x ] .~ ) e. ( ZZring RingHom ( ZZring /s .~ ) ) <-> ( x e. ZZ |-> [ x ] .~ ) = ( ZRHom ` ( ZZring /s .~ ) ) ) ) |
| 25 | 19 24 | mpbid | |- ( N e. NN0 -> ( x e. ZZ |-> [ x ] .~ ) = ( ZRHom ` ( ZZring /s .~ ) ) ) |
| 26 | 1 9 3 | znzrh | |- ( N e. NN0 -> ( ZRHom ` ( ZZring /s .~ ) ) = ( ZRHom ` Y ) ) |
| 27 | 25 26 | eqtr2d | |- ( N e. NN0 -> ( ZRHom ` Y ) = ( x e. ZZ |-> [ x ] .~ ) ) |
| 28 | 4 27 | eqtrid | |- ( N e. NN0 -> L = ( x e. ZZ |-> [ x ] .~ ) ) |