This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set n ZZ is an ideal in ZZ . (Contributed by Mario Carneiro, 14-Jun-2015) (Revised by AV, 13-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | znval.s | ⊢ 𝑆 = ( RSpan ‘ ℤring ) | |
| Assertion | znlidl | ⊢ ( 𝑁 ∈ ℤ → ( 𝑆 ‘ { 𝑁 } ) ∈ ( LIdeal ‘ ℤring ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | znval.s | ⊢ 𝑆 = ( RSpan ‘ ℤring ) | |
| 2 | zringring | ⊢ ℤring ∈ Ring | |
| 3 | snssi | ⊢ ( 𝑁 ∈ ℤ → { 𝑁 } ⊆ ℤ ) | |
| 4 | zringbas | ⊢ ℤ = ( Base ‘ ℤring ) | |
| 5 | eqid | ⊢ ( LIdeal ‘ ℤring ) = ( LIdeal ‘ ℤring ) | |
| 6 | 1 4 5 | rspcl | ⊢ ( ( ℤring ∈ Ring ∧ { 𝑁 } ⊆ ℤ ) → ( 𝑆 ‘ { 𝑁 } ) ∈ ( LIdeal ‘ ℤring ) ) |
| 7 | 2 3 6 | sylancr | ⊢ ( 𝑁 ∈ ℤ → ( 𝑆 ‘ { 𝑁 } ) ∈ ( LIdeal ‘ ℤring ) ) |