This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for zntos . (Contributed by Mario Carneiro, 15-Jun-2015) (Revised by AV, 13-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | znle2.y | ⊢ 𝑌 = ( ℤ/nℤ ‘ 𝑁 ) | |
| znle2.f | ⊢ 𝐹 = ( ( ℤRHom ‘ 𝑌 ) ↾ 𝑊 ) | ||
| znle2.w | ⊢ 𝑊 = if ( 𝑁 = 0 , ℤ , ( 0 ..^ 𝑁 ) ) | ||
| znle2.l | ⊢ ≤ = ( le ‘ 𝑌 ) | ||
| znleval.x | ⊢ 𝑋 = ( Base ‘ 𝑌 ) | ||
| Assertion | zntoslem | ⊢ ( 𝑁 ∈ ℕ0 → 𝑌 ∈ Toset ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | znle2.y | ⊢ 𝑌 = ( ℤ/nℤ ‘ 𝑁 ) | |
| 2 | znle2.f | ⊢ 𝐹 = ( ( ℤRHom ‘ 𝑌 ) ↾ 𝑊 ) | |
| 3 | znle2.w | ⊢ 𝑊 = if ( 𝑁 = 0 , ℤ , ( 0 ..^ 𝑁 ) ) | |
| 4 | znle2.l | ⊢ ≤ = ( le ‘ 𝑌 ) | |
| 5 | znleval.x | ⊢ 𝑋 = ( Base ‘ 𝑌 ) | |
| 6 | 1 | fvexi | ⊢ 𝑌 ∈ V |
| 7 | 6 | a1i | ⊢ ( 𝑁 ∈ ℕ0 → 𝑌 ∈ V ) |
| 8 | 5 | a1i | ⊢ ( 𝑁 ∈ ℕ0 → 𝑋 = ( Base ‘ 𝑌 ) ) |
| 9 | 4 | a1i | ⊢ ( 𝑁 ∈ ℕ0 → ≤ = ( le ‘ 𝑌 ) ) |
| 10 | 1 5 2 3 | znf1o | ⊢ ( 𝑁 ∈ ℕ0 → 𝐹 : 𝑊 –1-1-onto→ 𝑋 ) |
| 11 | f1ocnv | ⊢ ( 𝐹 : 𝑊 –1-1-onto→ 𝑋 → ◡ 𝐹 : 𝑋 –1-1-onto→ 𝑊 ) | |
| 12 | 10 11 | syl | ⊢ ( 𝑁 ∈ ℕ0 → ◡ 𝐹 : 𝑋 –1-1-onto→ 𝑊 ) |
| 13 | f1of | ⊢ ( ◡ 𝐹 : 𝑋 –1-1-onto→ 𝑊 → ◡ 𝐹 : 𝑋 ⟶ 𝑊 ) | |
| 14 | 12 13 | syl | ⊢ ( 𝑁 ∈ ℕ0 → ◡ 𝐹 : 𝑋 ⟶ 𝑊 ) |
| 15 | sseq1 | ⊢ ( ℤ = if ( 𝑁 = 0 , ℤ , ( 0 ..^ 𝑁 ) ) → ( ℤ ⊆ ℤ ↔ if ( 𝑁 = 0 , ℤ , ( 0 ..^ 𝑁 ) ) ⊆ ℤ ) ) | |
| 16 | sseq1 | ⊢ ( ( 0 ..^ 𝑁 ) = if ( 𝑁 = 0 , ℤ , ( 0 ..^ 𝑁 ) ) → ( ( 0 ..^ 𝑁 ) ⊆ ℤ ↔ if ( 𝑁 = 0 , ℤ , ( 0 ..^ 𝑁 ) ) ⊆ ℤ ) ) | |
| 17 | ssid | ⊢ ℤ ⊆ ℤ | |
| 18 | fzossz | ⊢ ( 0 ..^ 𝑁 ) ⊆ ℤ | |
| 19 | 15 16 17 18 | keephyp | ⊢ if ( 𝑁 = 0 , ℤ , ( 0 ..^ 𝑁 ) ) ⊆ ℤ |
| 20 | 3 19 | eqsstri | ⊢ 𝑊 ⊆ ℤ |
| 21 | zssre | ⊢ ℤ ⊆ ℝ | |
| 22 | 20 21 | sstri | ⊢ 𝑊 ⊆ ℝ |
| 23 | fss | ⊢ ( ( ◡ 𝐹 : 𝑋 ⟶ 𝑊 ∧ 𝑊 ⊆ ℝ ) → ◡ 𝐹 : 𝑋 ⟶ ℝ ) | |
| 24 | 14 22 23 | sylancl | ⊢ ( 𝑁 ∈ ℕ0 → ◡ 𝐹 : 𝑋 ⟶ ℝ ) |
| 25 | 24 | ffvelcdmda | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ 𝑋 ) → ( ◡ 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
| 26 | 25 | leidd | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ 𝑋 ) → ( ◡ 𝐹 ‘ 𝑥 ) ≤ ( ◡ 𝐹 ‘ 𝑥 ) ) |
| 27 | 1 2 3 4 5 | znleval2 | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑥 ≤ 𝑥 ↔ ( ◡ 𝐹 ‘ 𝑥 ) ≤ ( ◡ 𝐹 ‘ 𝑥 ) ) ) |
| 28 | 27 | 3anidm23 | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑥 ≤ 𝑥 ↔ ( ◡ 𝐹 ‘ 𝑥 ) ≤ ( ◡ 𝐹 ‘ 𝑥 ) ) ) |
| 29 | 26 28 | mpbird | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ≤ 𝑥 ) |
| 30 | 1 2 3 4 5 | znleval2 | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 ≤ 𝑦 ↔ ( ◡ 𝐹 ‘ 𝑥 ) ≤ ( ◡ 𝐹 ‘ 𝑦 ) ) ) |
| 31 | 1 2 3 4 5 | znleval2 | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑦 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑦 ≤ 𝑥 ↔ ( ◡ 𝐹 ‘ 𝑦 ) ≤ ( ◡ 𝐹 ‘ 𝑥 ) ) ) |
| 32 | 31 | 3com23 | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑦 ≤ 𝑥 ↔ ( ◡ 𝐹 ‘ 𝑦 ) ≤ ( ◡ 𝐹 ‘ 𝑥 ) ) ) |
| 33 | 30 32 | anbi12d | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥 ) ↔ ( ( ◡ 𝐹 ‘ 𝑥 ) ≤ ( ◡ 𝐹 ‘ 𝑦 ) ∧ ( ◡ 𝐹 ‘ 𝑦 ) ≤ ( ◡ 𝐹 ‘ 𝑥 ) ) ) ) |
| 34 | 25 | 3adant3 | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ◡ 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
| 35 | 24 | ffvelcdmda | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑦 ∈ 𝑋 ) → ( ◡ 𝐹 ‘ 𝑦 ) ∈ ℝ ) |
| 36 | 35 | 3adant2 | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ◡ 𝐹 ‘ 𝑦 ) ∈ ℝ ) |
| 37 | 34 36 | letri3d | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( ◡ 𝐹 ‘ 𝑥 ) = ( ◡ 𝐹 ‘ 𝑦 ) ↔ ( ( ◡ 𝐹 ‘ 𝑥 ) ≤ ( ◡ 𝐹 ‘ 𝑦 ) ∧ ( ◡ 𝐹 ‘ 𝑦 ) ≤ ( ◡ 𝐹 ‘ 𝑥 ) ) ) ) |
| 38 | f1of1 | ⊢ ( ◡ 𝐹 : 𝑋 –1-1-onto→ 𝑊 → ◡ 𝐹 : 𝑋 –1-1→ 𝑊 ) | |
| 39 | 12 38 | syl | ⊢ ( 𝑁 ∈ ℕ0 → ◡ 𝐹 : 𝑋 –1-1→ 𝑊 ) |
| 40 | f1fveq | ⊢ ( ( ◡ 𝐹 : 𝑋 –1-1→ 𝑊 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( ◡ 𝐹 ‘ 𝑥 ) = ( ◡ 𝐹 ‘ 𝑦 ) ↔ 𝑥 = 𝑦 ) ) | |
| 41 | 39 40 | sylan | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( ◡ 𝐹 ‘ 𝑥 ) = ( ◡ 𝐹 ‘ 𝑦 ) ↔ 𝑥 = 𝑦 ) ) |
| 42 | 41 | 3impb | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( ◡ 𝐹 ‘ 𝑥 ) = ( ◡ 𝐹 ‘ 𝑦 ) ↔ 𝑥 = 𝑦 ) ) |
| 43 | 33 37 42 | 3bitr2d | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥 ) ↔ 𝑥 = 𝑦 ) ) |
| 44 | 43 | biimpd | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥 ) → 𝑥 = 𝑦 ) ) |
| 45 | 25 | 3ad2antr1 | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( ◡ 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
| 46 | 35 | 3ad2antr2 | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( ◡ 𝐹 ‘ 𝑦 ) ∈ ℝ ) |
| 47 | 24 | ffvelcdmda | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑧 ∈ 𝑋 ) → ( ◡ 𝐹 ‘ 𝑧 ) ∈ ℝ ) |
| 48 | 47 | 3ad2antr3 | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( ◡ 𝐹 ‘ 𝑧 ) ∈ ℝ ) |
| 49 | letr | ⊢ ( ( ( ◡ 𝐹 ‘ 𝑥 ) ∈ ℝ ∧ ( ◡ 𝐹 ‘ 𝑦 ) ∈ ℝ ∧ ( ◡ 𝐹 ‘ 𝑧 ) ∈ ℝ ) → ( ( ( ◡ 𝐹 ‘ 𝑥 ) ≤ ( ◡ 𝐹 ‘ 𝑦 ) ∧ ( ◡ 𝐹 ‘ 𝑦 ) ≤ ( ◡ 𝐹 ‘ 𝑧 ) ) → ( ◡ 𝐹 ‘ 𝑥 ) ≤ ( ◡ 𝐹 ‘ 𝑧 ) ) ) | |
| 50 | 45 46 48 49 | syl3anc | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( ( ( ◡ 𝐹 ‘ 𝑥 ) ≤ ( ◡ 𝐹 ‘ 𝑦 ) ∧ ( ◡ 𝐹 ‘ 𝑦 ) ≤ ( ◡ 𝐹 ‘ 𝑧 ) ) → ( ◡ 𝐹 ‘ 𝑥 ) ≤ ( ◡ 𝐹 ‘ 𝑧 ) ) ) |
| 51 | 30 | 3adant3r3 | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑥 ≤ 𝑦 ↔ ( ◡ 𝐹 ‘ 𝑥 ) ≤ ( ◡ 𝐹 ‘ 𝑦 ) ) ) |
| 52 | 1 2 3 4 5 | znleval2 | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) → ( 𝑦 ≤ 𝑧 ↔ ( ◡ 𝐹 ‘ 𝑦 ) ≤ ( ◡ 𝐹 ‘ 𝑧 ) ) ) |
| 53 | 52 | 3adant3r1 | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑦 ≤ 𝑧 ↔ ( ◡ 𝐹 ‘ 𝑦 ) ≤ ( ◡ 𝐹 ‘ 𝑧 ) ) ) |
| 54 | 51 53 | anbi12d | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧 ) ↔ ( ( ◡ 𝐹 ‘ 𝑥 ) ≤ ( ◡ 𝐹 ‘ 𝑦 ) ∧ ( ◡ 𝐹 ‘ 𝑦 ) ≤ ( ◡ 𝐹 ‘ 𝑧 ) ) ) ) |
| 55 | 1 2 3 4 5 | znleval2 | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) → ( 𝑥 ≤ 𝑧 ↔ ( ◡ 𝐹 ‘ 𝑥 ) ≤ ( ◡ 𝐹 ‘ 𝑧 ) ) ) |
| 56 | 55 | 3adant3r2 | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑥 ≤ 𝑧 ↔ ( ◡ 𝐹 ‘ 𝑥 ) ≤ ( ◡ 𝐹 ‘ 𝑧 ) ) ) |
| 57 | 50 54 56 | 3imtr4d | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧 ) → 𝑥 ≤ 𝑧 ) ) |
| 58 | 7 8 9 29 44 57 | isposd | ⊢ ( 𝑁 ∈ ℕ0 → 𝑌 ∈ Poset ) |
| 59 | 34 36 | letrid | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( ◡ 𝐹 ‘ 𝑥 ) ≤ ( ◡ 𝐹 ‘ 𝑦 ) ∨ ( ◡ 𝐹 ‘ 𝑦 ) ≤ ( ◡ 𝐹 ‘ 𝑥 ) ) ) |
| 60 | 30 32 | orbi12d | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥 ) ↔ ( ( ◡ 𝐹 ‘ 𝑥 ) ≤ ( ◡ 𝐹 ‘ 𝑦 ) ∨ ( ◡ 𝐹 ‘ 𝑦 ) ≤ ( ◡ 𝐹 ‘ 𝑥 ) ) ) ) |
| 61 | 59 60 | mpbird | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥 ) ) |
| 62 | 61 | 3expb | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥 ) ) |
| 63 | 62 | ralrimivva | ⊢ ( 𝑁 ∈ ℕ0 → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥 ) ) |
| 64 | 5 4 | istos | ⊢ ( 𝑌 ∈ Toset ↔ ( 𝑌 ∈ Poset ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥 ) ) ) |
| 65 | 58 63 64 | sylanbrc | ⊢ ( 𝑁 ∈ ℕ0 → 𝑌 ∈ Toset ) |