This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The ordering of the Z/nZ structure. (Contributed by Mario Carneiro, 15-Jun-2015) (Revised by AV, 13-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | znle2.y | ⊢ 𝑌 = ( ℤ/nℤ ‘ 𝑁 ) | |
| znle2.f | ⊢ 𝐹 = ( ( ℤRHom ‘ 𝑌 ) ↾ 𝑊 ) | ||
| znle2.w | ⊢ 𝑊 = if ( 𝑁 = 0 , ℤ , ( 0 ..^ 𝑁 ) ) | ||
| znle2.l | ⊢ ≤ = ( le ‘ 𝑌 ) | ||
| znleval.x | ⊢ 𝑋 = ( Base ‘ 𝑌 ) | ||
| Assertion | znleval2 | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 ≤ 𝐵 ↔ ( ◡ 𝐹 ‘ 𝐴 ) ≤ ( ◡ 𝐹 ‘ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | znle2.y | ⊢ 𝑌 = ( ℤ/nℤ ‘ 𝑁 ) | |
| 2 | znle2.f | ⊢ 𝐹 = ( ( ℤRHom ‘ 𝑌 ) ↾ 𝑊 ) | |
| 3 | znle2.w | ⊢ 𝑊 = if ( 𝑁 = 0 , ℤ , ( 0 ..^ 𝑁 ) ) | |
| 4 | znle2.l | ⊢ ≤ = ( le ‘ 𝑌 ) | |
| 5 | znleval.x | ⊢ 𝑋 = ( Base ‘ 𝑌 ) | |
| 6 | 1 2 3 4 5 | znleval | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝐴 ≤ 𝐵 ↔ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ ( ◡ 𝐹 ‘ 𝐴 ) ≤ ( ◡ 𝐹 ‘ 𝐵 ) ) ) ) |
| 7 | 6 | 3ad2ant1 | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 ≤ 𝐵 ↔ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ ( ◡ 𝐹 ‘ 𝐴 ) ≤ ( ◡ 𝐹 ‘ 𝐵 ) ) ) ) |
| 8 | 3simpc | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) | |
| 9 | 8 | biantrurd | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( ◡ 𝐹 ‘ 𝐴 ) ≤ ( ◡ 𝐹 ‘ 𝐵 ) ↔ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ◡ 𝐹 ‘ 𝐴 ) ≤ ( ◡ 𝐹 ‘ 𝐵 ) ) ) ) |
| 10 | df-3an | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ ( ◡ 𝐹 ‘ 𝐴 ) ≤ ( ◡ 𝐹 ‘ 𝐵 ) ) ↔ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ◡ 𝐹 ‘ 𝐴 ) ≤ ( ◡ 𝐹 ‘ 𝐵 ) ) ) | |
| 11 | 9 10 | bitr4di | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( ◡ 𝐹 ‘ 𝐴 ) ≤ ( ◡ 𝐹 ‘ 𝐵 ) ↔ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ ( ◡ 𝐹 ‘ 𝐴 ) ≤ ( ◡ 𝐹 ‘ 𝐵 ) ) ) ) |
| 12 | 7 11 | bitr4d | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 ≤ 𝐵 ↔ ( ◡ 𝐹 ‘ 𝐴 ) ≤ ( ◡ 𝐹 ‘ 𝐵 ) ) ) |