This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Poset extensionality for division. (Contributed by Stefan O'Rear, 6-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvdsext | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → ( 𝐴 = 𝐵 ↔ ∀ 𝑥 ∈ ℕ0 ( 𝐴 ∥ 𝑥 ↔ 𝐵 ∥ 𝑥 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1 | ⊢ ( 𝐴 = 𝐵 → ( 𝐴 ∥ 𝑥 ↔ 𝐵 ∥ 𝑥 ) ) | |
| 2 | 1 | ralrimivw | ⊢ ( 𝐴 = 𝐵 → ∀ 𝑥 ∈ ℕ0 ( 𝐴 ∥ 𝑥 ↔ 𝐵 ∥ 𝑥 ) ) |
| 3 | simpll | ⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝐴 ∥ 𝑥 ↔ 𝐵 ∥ 𝑥 ) ) → 𝐴 ∈ ℕ0 ) | |
| 4 | simplr | ⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝐴 ∥ 𝑥 ↔ 𝐵 ∥ 𝑥 ) ) → 𝐵 ∈ ℕ0 ) | |
| 5 | nn0z | ⊢ ( 𝐵 ∈ ℕ0 → 𝐵 ∈ ℤ ) | |
| 6 | iddvds | ⊢ ( 𝐵 ∈ ℤ → 𝐵 ∥ 𝐵 ) | |
| 7 | 5 6 | syl | ⊢ ( 𝐵 ∈ ℕ0 → 𝐵 ∥ 𝐵 ) |
| 8 | 7 | ad2antlr | ⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝐴 ∥ 𝑥 ↔ 𝐵 ∥ 𝑥 ) ) → 𝐵 ∥ 𝐵 ) |
| 9 | breq2 | ⊢ ( 𝑥 = 𝐵 → ( 𝐴 ∥ 𝑥 ↔ 𝐴 ∥ 𝐵 ) ) | |
| 10 | breq2 | ⊢ ( 𝑥 = 𝐵 → ( 𝐵 ∥ 𝑥 ↔ 𝐵 ∥ 𝐵 ) ) | |
| 11 | 9 10 | bibi12d | ⊢ ( 𝑥 = 𝐵 → ( ( 𝐴 ∥ 𝑥 ↔ 𝐵 ∥ 𝑥 ) ↔ ( 𝐴 ∥ 𝐵 ↔ 𝐵 ∥ 𝐵 ) ) ) |
| 12 | 11 | rspcva | ⊢ ( ( 𝐵 ∈ ℕ0 ∧ ∀ 𝑥 ∈ ℕ0 ( 𝐴 ∥ 𝑥 ↔ 𝐵 ∥ 𝑥 ) ) → ( 𝐴 ∥ 𝐵 ↔ 𝐵 ∥ 𝐵 ) ) |
| 13 | 12 | adantll | ⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝐴 ∥ 𝑥 ↔ 𝐵 ∥ 𝑥 ) ) → ( 𝐴 ∥ 𝐵 ↔ 𝐵 ∥ 𝐵 ) ) |
| 14 | 8 13 | mpbird | ⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝐴 ∥ 𝑥 ↔ 𝐵 ∥ 𝑥 ) ) → 𝐴 ∥ 𝐵 ) |
| 15 | nn0z | ⊢ ( 𝐴 ∈ ℕ0 → 𝐴 ∈ ℤ ) | |
| 16 | iddvds | ⊢ ( 𝐴 ∈ ℤ → 𝐴 ∥ 𝐴 ) | |
| 17 | 15 16 | syl | ⊢ ( 𝐴 ∈ ℕ0 → 𝐴 ∥ 𝐴 ) |
| 18 | 17 | ad2antrr | ⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝐴 ∥ 𝑥 ↔ 𝐵 ∥ 𝑥 ) ) → 𝐴 ∥ 𝐴 ) |
| 19 | breq2 | ⊢ ( 𝑥 = 𝐴 → ( 𝐴 ∥ 𝑥 ↔ 𝐴 ∥ 𝐴 ) ) | |
| 20 | breq2 | ⊢ ( 𝑥 = 𝐴 → ( 𝐵 ∥ 𝑥 ↔ 𝐵 ∥ 𝐴 ) ) | |
| 21 | 19 20 | bibi12d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝐴 ∥ 𝑥 ↔ 𝐵 ∥ 𝑥 ) ↔ ( 𝐴 ∥ 𝐴 ↔ 𝐵 ∥ 𝐴 ) ) ) |
| 22 | 21 | rspcva | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ ∀ 𝑥 ∈ ℕ0 ( 𝐴 ∥ 𝑥 ↔ 𝐵 ∥ 𝑥 ) ) → ( 𝐴 ∥ 𝐴 ↔ 𝐵 ∥ 𝐴 ) ) |
| 23 | 22 | adantlr | ⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝐴 ∥ 𝑥 ↔ 𝐵 ∥ 𝑥 ) ) → ( 𝐴 ∥ 𝐴 ↔ 𝐵 ∥ 𝐴 ) ) |
| 24 | 18 23 | mpbid | ⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝐴 ∥ 𝑥 ↔ 𝐵 ∥ 𝑥 ) ) → 𝐵 ∥ 𝐴 ) |
| 25 | dvdseq | ⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ∧ ( 𝐴 ∥ 𝐵 ∧ 𝐵 ∥ 𝐴 ) ) → 𝐴 = 𝐵 ) | |
| 26 | 3 4 14 24 25 | syl22anc | ⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝐴 ∥ 𝑥 ↔ 𝐵 ∥ 𝑥 ) ) → 𝐴 = 𝐵 ) |
| 27 | 26 | ex | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → ( ∀ 𝑥 ∈ ℕ0 ( 𝐴 ∥ 𝑥 ↔ 𝐵 ∥ 𝑥 ) → 𝐴 = 𝐵 ) ) |
| 28 | 2 27 | impbid2 | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → ( 𝐴 = 𝐵 ↔ ∀ 𝑥 ∈ ℕ0 ( 𝐴 ∥ 𝑥 ↔ 𝐵 ∥ 𝑥 ) ) ) |