This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Identity law for modulo restricted to integers. (Contributed by AV, 27-Oct-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | zmodidfzo | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑀 mod 𝑁 ) = 𝑀 ↔ 𝑀 ∈ ( 0 ..^ 𝑁 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zmodid2 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑀 mod 𝑁 ) = 𝑀 ↔ 𝑀 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ) | |
| 2 | nnz | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℤ ) | |
| 3 | fzoval | ⊢ ( 𝑁 ∈ ℤ → ( 0 ..^ 𝑁 ) = ( 0 ... ( 𝑁 − 1 ) ) ) | |
| 4 | 2 3 | syl | ⊢ ( 𝑁 ∈ ℕ → ( 0 ..^ 𝑁 ) = ( 0 ... ( 𝑁 − 1 ) ) ) |
| 5 | 4 | adantl | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( 0 ..^ 𝑁 ) = ( 0 ... ( 𝑁 − 1 ) ) ) |
| 6 | 5 | eqcomd | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( 0 ... ( 𝑁 − 1 ) ) = ( 0 ..^ 𝑁 ) ) |
| 7 | 6 | eleq2d | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↔ 𝑀 ∈ ( 0 ..^ 𝑁 ) ) ) |
| 8 | 1 7 | bitrd | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑀 mod 𝑁 ) = 𝑀 ↔ 𝑀 ∈ ( 0 ..^ 𝑁 ) ) ) |