This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Identity law for modulo restricted to integers. (Contributed by AV, 27-Oct-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | zmodidfzo | |- ( ( M e. ZZ /\ N e. NN ) -> ( ( M mod N ) = M <-> M e. ( 0 ..^ N ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zmodid2 | |- ( ( M e. ZZ /\ N e. NN ) -> ( ( M mod N ) = M <-> M e. ( 0 ... ( N - 1 ) ) ) ) |
|
| 2 | nnz | |- ( N e. NN -> N e. ZZ ) |
|
| 3 | fzoval | |- ( N e. ZZ -> ( 0 ..^ N ) = ( 0 ... ( N - 1 ) ) ) |
|
| 4 | 2 3 | syl | |- ( N e. NN -> ( 0 ..^ N ) = ( 0 ... ( N - 1 ) ) ) |
| 5 | 4 | adantl | |- ( ( M e. ZZ /\ N e. NN ) -> ( 0 ..^ N ) = ( 0 ... ( N - 1 ) ) ) |
| 6 | 5 | eqcomd | |- ( ( M e. ZZ /\ N e. NN ) -> ( 0 ... ( N - 1 ) ) = ( 0 ..^ N ) ) |
| 7 | 6 | eleq2d | |- ( ( M e. ZZ /\ N e. NN ) -> ( M e. ( 0 ... ( N - 1 ) ) <-> M e. ( 0 ..^ N ) ) ) |
| 8 | 1 7 | bitrd | |- ( ( M e. ZZ /\ N e. NN ) -> ( ( M mod N ) = M <-> M e. ( 0 ..^ N ) ) ) |