This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: There is a unique largest integer less than or equal to a given real number. (Contributed by NM, 15-Nov-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | zmax | ⊢ ( 𝐴 ∈ ℝ → ∃! 𝑥 ∈ ℤ ( 𝑥 ≤ 𝐴 ∧ ∀ 𝑦 ∈ ℤ ( 𝑦 ≤ 𝐴 → 𝑦 ≤ 𝑥 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | renegcl | ⊢ ( 𝐴 ∈ ℝ → - 𝐴 ∈ ℝ ) | |
| 2 | zmin | ⊢ ( - 𝐴 ∈ ℝ → ∃! 𝑧 ∈ ℤ ( - 𝐴 ≤ 𝑧 ∧ ∀ 𝑤 ∈ ℤ ( - 𝐴 ≤ 𝑤 → 𝑧 ≤ 𝑤 ) ) ) | |
| 3 | 1 2 | syl | ⊢ ( 𝐴 ∈ ℝ → ∃! 𝑧 ∈ ℤ ( - 𝐴 ≤ 𝑧 ∧ ∀ 𝑤 ∈ ℤ ( - 𝐴 ≤ 𝑤 → 𝑧 ≤ 𝑤 ) ) ) |
| 4 | znegcl | ⊢ ( 𝑥 ∈ ℤ → - 𝑥 ∈ ℤ ) | |
| 5 | znegcl | ⊢ ( 𝑧 ∈ ℤ → - 𝑧 ∈ ℤ ) | |
| 6 | zcn | ⊢ ( 𝑧 ∈ ℤ → 𝑧 ∈ ℂ ) | |
| 7 | zcn | ⊢ ( 𝑥 ∈ ℤ → 𝑥 ∈ ℂ ) | |
| 8 | negcon2 | ⊢ ( ( 𝑧 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( 𝑧 = - 𝑥 ↔ 𝑥 = - 𝑧 ) ) | |
| 9 | 6 7 8 | syl2an | ⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑥 ∈ ℤ ) → ( 𝑧 = - 𝑥 ↔ 𝑥 = - 𝑧 ) ) |
| 10 | 5 9 | reuhyp | ⊢ ( 𝑧 ∈ ℤ → ∃! 𝑥 ∈ ℤ 𝑧 = - 𝑥 ) |
| 11 | breq2 | ⊢ ( 𝑧 = - 𝑥 → ( - 𝐴 ≤ 𝑧 ↔ - 𝐴 ≤ - 𝑥 ) ) | |
| 12 | breq1 | ⊢ ( 𝑧 = - 𝑥 → ( 𝑧 ≤ 𝑤 ↔ - 𝑥 ≤ 𝑤 ) ) | |
| 13 | 12 | imbi2d | ⊢ ( 𝑧 = - 𝑥 → ( ( - 𝐴 ≤ 𝑤 → 𝑧 ≤ 𝑤 ) ↔ ( - 𝐴 ≤ 𝑤 → - 𝑥 ≤ 𝑤 ) ) ) |
| 14 | 13 | ralbidv | ⊢ ( 𝑧 = - 𝑥 → ( ∀ 𝑤 ∈ ℤ ( - 𝐴 ≤ 𝑤 → 𝑧 ≤ 𝑤 ) ↔ ∀ 𝑤 ∈ ℤ ( - 𝐴 ≤ 𝑤 → - 𝑥 ≤ 𝑤 ) ) ) |
| 15 | 11 14 | anbi12d | ⊢ ( 𝑧 = - 𝑥 → ( ( - 𝐴 ≤ 𝑧 ∧ ∀ 𝑤 ∈ ℤ ( - 𝐴 ≤ 𝑤 → 𝑧 ≤ 𝑤 ) ) ↔ ( - 𝐴 ≤ - 𝑥 ∧ ∀ 𝑤 ∈ ℤ ( - 𝐴 ≤ 𝑤 → - 𝑥 ≤ 𝑤 ) ) ) ) |
| 16 | 4 10 15 | reuxfr1 | ⊢ ( ∃! 𝑧 ∈ ℤ ( - 𝐴 ≤ 𝑧 ∧ ∀ 𝑤 ∈ ℤ ( - 𝐴 ≤ 𝑤 → 𝑧 ≤ 𝑤 ) ) ↔ ∃! 𝑥 ∈ ℤ ( - 𝐴 ≤ - 𝑥 ∧ ∀ 𝑤 ∈ ℤ ( - 𝐴 ≤ 𝑤 → - 𝑥 ≤ 𝑤 ) ) ) |
| 17 | zre | ⊢ ( 𝑥 ∈ ℤ → 𝑥 ∈ ℝ ) | |
| 18 | leneg | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 𝑥 ≤ 𝐴 ↔ - 𝐴 ≤ - 𝑥 ) ) | |
| 19 | 17 18 | sylan | ⊢ ( ( 𝑥 ∈ ℤ ∧ 𝐴 ∈ ℝ ) → ( 𝑥 ≤ 𝐴 ↔ - 𝐴 ≤ - 𝑥 ) ) |
| 20 | 19 | ancoms | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ ) → ( 𝑥 ≤ 𝐴 ↔ - 𝐴 ≤ - 𝑥 ) ) |
| 21 | znegcl | ⊢ ( 𝑤 ∈ ℤ → - 𝑤 ∈ ℤ ) | |
| 22 | breq1 | ⊢ ( 𝑦 = - 𝑤 → ( 𝑦 ≤ 𝐴 ↔ - 𝑤 ≤ 𝐴 ) ) | |
| 23 | breq1 | ⊢ ( 𝑦 = - 𝑤 → ( 𝑦 ≤ 𝑥 ↔ - 𝑤 ≤ 𝑥 ) ) | |
| 24 | 22 23 | imbi12d | ⊢ ( 𝑦 = - 𝑤 → ( ( 𝑦 ≤ 𝐴 → 𝑦 ≤ 𝑥 ) ↔ ( - 𝑤 ≤ 𝐴 → - 𝑤 ≤ 𝑥 ) ) ) |
| 25 | 24 | rspcv | ⊢ ( - 𝑤 ∈ ℤ → ( ∀ 𝑦 ∈ ℤ ( 𝑦 ≤ 𝐴 → 𝑦 ≤ 𝑥 ) → ( - 𝑤 ≤ 𝐴 → - 𝑤 ≤ 𝑥 ) ) ) |
| 26 | 21 25 | syl | ⊢ ( 𝑤 ∈ ℤ → ( ∀ 𝑦 ∈ ℤ ( 𝑦 ≤ 𝐴 → 𝑦 ≤ 𝑥 ) → ( - 𝑤 ≤ 𝐴 → - 𝑤 ≤ 𝑥 ) ) ) |
| 27 | zre | ⊢ ( 𝑤 ∈ ℤ → 𝑤 ∈ ℝ ) | |
| 28 | lenegcon1 | ⊢ ( ( 𝑤 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( - 𝑤 ≤ 𝐴 ↔ - 𝐴 ≤ 𝑤 ) ) | |
| 29 | 28 | adantrr | ⊢ ( ( 𝑤 ∈ ℝ ∧ ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ ) ) → ( - 𝑤 ≤ 𝐴 ↔ - 𝐴 ≤ 𝑤 ) ) |
| 30 | lenegcon1 | ⊢ ( ( 𝑤 ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( - 𝑤 ≤ 𝑥 ↔ - 𝑥 ≤ 𝑤 ) ) | |
| 31 | 17 30 | sylan2 | ⊢ ( ( 𝑤 ∈ ℝ ∧ 𝑥 ∈ ℤ ) → ( - 𝑤 ≤ 𝑥 ↔ - 𝑥 ≤ 𝑤 ) ) |
| 32 | 31 | adantrl | ⊢ ( ( 𝑤 ∈ ℝ ∧ ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ ) ) → ( - 𝑤 ≤ 𝑥 ↔ - 𝑥 ≤ 𝑤 ) ) |
| 33 | 29 32 | imbi12d | ⊢ ( ( 𝑤 ∈ ℝ ∧ ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ ) ) → ( ( - 𝑤 ≤ 𝐴 → - 𝑤 ≤ 𝑥 ) ↔ ( - 𝐴 ≤ 𝑤 → - 𝑥 ≤ 𝑤 ) ) ) |
| 34 | 27 33 | sylan | ⊢ ( ( 𝑤 ∈ ℤ ∧ ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ ) ) → ( ( - 𝑤 ≤ 𝐴 → - 𝑤 ≤ 𝑥 ) ↔ ( - 𝐴 ≤ 𝑤 → - 𝑥 ≤ 𝑤 ) ) ) |
| 35 | 34 | biimpd | ⊢ ( ( 𝑤 ∈ ℤ ∧ ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ ) ) → ( ( - 𝑤 ≤ 𝐴 → - 𝑤 ≤ 𝑥 ) → ( - 𝐴 ≤ 𝑤 → - 𝑥 ≤ 𝑤 ) ) ) |
| 36 | 35 | ex | ⊢ ( 𝑤 ∈ ℤ → ( ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ ) → ( ( - 𝑤 ≤ 𝐴 → - 𝑤 ≤ 𝑥 ) → ( - 𝐴 ≤ 𝑤 → - 𝑥 ≤ 𝑤 ) ) ) ) |
| 37 | 36 | com23 | ⊢ ( 𝑤 ∈ ℤ → ( ( - 𝑤 ≤ 𝐴 → - 𝑤 ≤ 𝑥 ) → ( ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ ) → ( - 𝐴 ≤ 𝑤 → - 𝑥 ≤ 𝑤 ) ) ) ) |
| 38 | 26 37 | syld | ⊢ ( 𝑤 ∈ ℤ → ( ∀ 𝑦 ∈ ℤ ( 𝑦 ≤ 𝐴 → 𝑦 ≤ 𝑥 ) → ( ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ ) → ( - 𝐴 ≤ 𝑤 → - 𝑥 ≤ 𝑤 ) ) ) ) |
| 39 | 38 | com13 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ ) → ( ∀ 𝑦 ∈ ℤ ( 𝑦 ≤ 𝐴 → 𝑦 ≤ 𝑥 ) → ( 𝑤 ∈ ℤ → ( - 𝐴 ≤ 𝑤 → - 𝑥 ≤ 𝑤 ) ) ) ) |
| 40 | 39 | ralrimdv | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ ) → ( ∀ 𝑦 ∈ ℤ ( 𝑦 ≤ 𝐴 → 𝑦 ≤ 𝑥 ) → ∀ 𝑤 ∈ ℤ ( - 𝐴 ≤ 𝑤 → - 𝑥 ≤ 𝑤 ) ) ) |
| 41 | znegcl | ⊢ ( 𝑦 ∈ ℤ → - 𝑦 ∈ ℤ ) | |
| 42 | breq2 | ⊢ ( 𝑤 = - 𝑦 → ( - 𝐴 ≤ 𝑤 ↔ - 𝐴 ≤ - 𝑦 ) ) | |
| 43 | breq2 | ⊢ ( 𝑤 = - 𝑦 → ( - 𝑥 ≤ 𝑤 ↔ - 𝑥 ≤ - 𝑦 ) ) | |
| 44 | 42 43 | imbi12d | ⊢ ( 𝑤 = - 𝑦 → ( ( - 𝐴 ≤ 𝑤 → - 𝑥 ≤ 𝑤 ) ↔ ( - 𝐴 ≤ - 𝑦 → - 𝑥 ≤ - 𝑦 ) ) ) |
| 45 | 44 | rspcv | ⊢ ( - 𝑦 ∈ ℤ → ( ∀ 𝑤 ∈ ℤ ( - 𝐴 ≤ 𝑤 → - 𝑥 ≤ 𝑤 ) → ( - 𝐴 ≤ - 𝑦 → - 𝑥 ≤ - 𝑦 ) ) ) |
| 46 | 41 45 | syl | ⊢ ( 𝑦 ∈ ℤ → ( ∀ 𝑤 ∈ ℤ ( - 𝐴 ≤ 𝑤 → - 𝑥 ≤ 𝑤 ) → ( - 𝐴 ≤ - 𝑦 → - 𝑥 ≤ - 𝑦 ) ) ) |
| 47 | zre | ⊢ ( 𝑦 ∈ ℤ → 𝑦 ∈ ℝ ) | |
| 48 | leneg | ⊢ ( ( 𝑦 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 𝑦 ≤ 𝐴 ↔ - 𝐴 ≤ - 𝑦 ) ) | |
| 49 | 48 | adantrr | ⊢ ( ( 𝑦 ∈ ℝ ∧ ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ ) ) → ( 𝑦 ≤ 𝐴 ↔ - 𝐴 ≤ - 𝑦 ) ) |
| 50 | leneg | ⊢ ( ( 𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( 𝑦 ≤ 𝑥 ↔ - 𝑥 ≤ - 𝑦 ) ) | |
| 51 | 17 50 | sylan2 | ⊢ ( ( 𝑦 ∈ ℝ ∧ 𝑥 ∈ ℤ ) → ( 𝑦 ≤ 𝑥 ↔ - 𝑥 ≤ - 𝑦 ) ) |
| 52 | 51 | adantrl | ⊢ ( ( 𝑦 ∈ ℝ ∧ ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ ) ) → ( 𝑦 ≤ 𝑥 ↔ - 𝑥 ≤ - 𝑦 ) ) |
| 53 | 49 52 | imbi12d | ⊢ ( ( 𝑦 ∈ ℝ ∧ ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ ) ) → ( ( 𝑦 ≤ 𝐴 → 𝑦 ≤ 𝑥 ) ↔ ( - 𝐴 ≤ - 𝑦 → - 𝑥 ≤ - 𝑦 ) ) ) |
| 54 | 47 53 | sylan | ⊢ ( ( 𝑦 ∈ ℤ ∧ ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ ) ) → ( ( 𝑦 ≤ 𝐴 → 𝑦 ≤ 𝑥 ) ↔ ( - 𝐴 ≤ - 𝑦 → - 𝑥 ≤ - 𝑦 ) ) ) |
| 55 | 54 | exbiri | ⊢ ( 𝑦 ∈ ℤ → ( ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ ) → ( ( - 𝐴 ≤ - 𝑦 → - 𝑥 ≤ - 𝑦 ) → ( 𝑦 ≤ 𝐴 → 𝑦 ≤ 𝑥 ) ) ) ) |
| 56 | 55 | com23 | ⊢ ( 𝑦 ∈ ℤ → ( ( - 𝐴 ≤ - 𝑦 → - 𝑥 ≤ - 𝑦 ) → ( ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ ) → ( 𝑦 ≤ 𝐴 → 𝑦 ≤ 𝑥 ) ) ) ) |
| 57 | 46 56 | syld | ⊢ ( 𝑦 ∈ ℤ → ( ∀ 𝑤 ∈ ℤ ( - 𝐴 ≤ 𝑤 → - 𝑥 ≤ 𝑤 ) → ( ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ ) → ( 𝑦 ≤ 𝐴 → 𝑦 ≤ 𝑥 ) ) ) ) |
| 58 | 57 | com13 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ ) → ( ∀ 𝑤 ∈ ℤ ( - 𝐴 ≤ 𝑤 → - 𝑥 ≤ 𝑤 ) → ( 𝑦 ∈ ℤ → ( 𝑦 ≤ 𝐴 → 𝑦 ≤ 𝑥 ) ) ) ) |
| 59 | 58 | ralrimdv | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ ) → ( ∀ 𝑤 ∈ ℤ ( - 𝐴 ≤ 𝑤 → - 𝑥 ≤ 𝑤 ) → ∀ 𝑦 ∈ ℤ ( 𝑦 ≤ 𝐴 → 𝑦 ≤ 𝑥 ) ) ) |
| 60 | 40 59 | impbid | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ ) → ( ∀ 𝑦 ∈ ℤ ( 𝑦 ≤ 𝐴 → 𝑦 ≤ 𝑥 ) ↔ ∀ 𝑤 ∈ ℤ ( - 𝐴 ≤ 𝑤 → - 𝑥 ≤ 𝑤 ) ) ) |
| 61 | 20 60 | anbi12d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ ) → ( ( 𝑥 ≤ 𝐴 ∧ ∀ 𝑦 ∈ ℤ ( 𝑦 ≤ 𝐴 → 𝑦 ≤ 𝑥 ) ) ↔ ( - 𝐴 ≤ - 𝑥 ∧ ∀ 𝑤 ∈ ℤ ( - 𝐴 ≤ 𝑤 → - 𝑥 ≤ 𝑤 ) ) ) ) |
| 62 | 61 | reubidva | ⊢ ( 𝐴 ∈ ℝ → ( ∃! 𝑥 ∈ ℤ ( 𝑥 ≤ 𝐴 ∧ ∀ 𝑦 ∈ ℤ ( 𝑦 ≤ 𝐴 → 𝑦 ≤ 𝑥 ) ) ↔ ∃! 𝑥 ∈ ℤ ( - 𝐴 ≤ - 𝑥 ∧ ∀ 𝑤 ∈ ℤ ( - 𝐴 ≤ 𝑤 → - 𝑥 ≤ 𝑤 ) ) ) ) |
| 63 | 16 62 | bitr4id | ⊢ ( 𝐴 ∈ ℝ → ( ∃! 𝑧 ∈ ℤ ( - 𝐴 ≤ 𝑧 ∧ ∀ 𝑤 ∈ ℤ ( - 𝐴 ≤ 𝑤 → 𝑧 ≤ 𝑤 ) ) ↔ ∃! 𝑥 ∈ ℤ ( 𝑥 ≤ 𝐴 ∧ ∀ 𝑦 ∈ ℤ ( 𝑦 ≤ 𝐴 → 𝑦 ≤ 𝑥 ) ) ) ) |
| 64 | 3 63 | mpbid | ⊢ ( 𝐴 ∈ ℝ → ∃! 𝑥 ∈ ℤ ( 𝑥 ≤ 𝐴 ∧ ∀ 𝑦 ∈ ℤ ( 𝑦 ≤ 𝐴 → 𝑦 ≤ 𝑥 ) ) ) |