This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: There is a unique integer between a real number and the number plus one. Exercise 5 of Apostol p. 28. (Contributed by NM, 13-Nov-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | zbtwnre | ⊢ ( 𝐴 ∈ ℝ → ∃! 𝑥 ∈ ℤ ( 𝐴 ≤ 𝑥 ∧ 𝑥 < ( 𝐴 + 1 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zmin | ⊢ ( 𝐴 ∈ ℝ → ∃! 𝑥 ∈ ℤ ( 𝐴 ≤ 𝑥 ∧ ∀ 𝑦 ∈ ℤ ( 𝐴 ≤ 𝑦 → 𝑥 ≤ 𝑦 ) ) ) | |
| 2 | zre | ⊢ ( 𝑦 ∈ ℤ → 𝑦 ∈ ℝ ) | |
| 3 | zre | ⊢ ( 𝑥 ∈ ℤ → 𝑥 ∈ ℝ ) | |
| 4 | peano2rem | ⊢ ( 𝑥 ∈ ℝ → ( 𝑥 − 1 ) ∈ ℝ ) | |
| 5 | 3 4 | syl | ⊢ ( 𝑥 ∈ ℤ → ( 𝑥 − 1 ) ∈ ℝ ) |
| 6 | ltletr | ⊢ ( ( ( 𝑥 − 1 ) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( ( 𝑥 − 1 ) < 𝐴 ∧ 𝐴 ≤ 𝑦 ) → ( 𝑥 − 1 ) < 𝑦 ) ) | |
| 7 | 5 6 | syl3an1 | ⊢ ( ( 𝑥 ∈ ℤ ∧ 𝐴 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( ( 𝑥 − 1 ) < 𝐴 ∧ 𝐴 ≤ 𝑦 ) → ( 𝑥 − 1 ) < 𝑦 ) ) |
| 8 | 7 | 3expa | ⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝐴 ∈ ℝ ) ∧ 𝑦 ∈ ℝ ) → ( ( ( 𝑥 − 1 ) < 𝐴 ∧ 𝐴 ≤ 𝑦 ) → ( 𝑥 − 1 ) < 𝑦 ) ) |
| 9 | 2 8 | sylan2 | ⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝐴 ∈ ℝ ) ∧ 𝑦 ∈ ℤ ) → ( ( ( 𝑥 − 1 ) < 𝐴 ∧ 𝐴 ≤ 𝑦 ) → ( 𝑥 − 1 ) < 𝑦 ) ) |
| 10 | zlem1lt | ⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → ( 𝑥 ≤ 𝑦 ↔ ( 𝑥 − 1 ) < 𝑦 ) ) | |
| 11 | 10 | adantlr | ⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝐴 ∈ ℝ ) ∧ 𝑦 ∈ ℤ ) → ( 𝑥 ≤ 𝑦 ↔ ( 𝑥 − 1 ) < 𝑦 ) ) |
| 12 | 9 11 | sylibrd | ⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝐴 ∈ ℝ ) ∧ 𝑦 ∈ ℤ ) → ( ( ( 𝑥 − 1 ) < 𝐴 ∧ 𝐴 ≤ 𝑦 ) → 𝑥 ≤ 𝑦 ) ) |
| 13 | 12 | exp4b | ⊢ ( ( 𝑥 ∈ ℤ ∧ 𝐴 ∈ ℝ ) → ( 𝑦 ∈ ℤ → ( ( 𝑥 − 1 ) < 𝐴 → ( 𝐴 ≤ 𝑦 → 𝑥 ≤ 𝑦 ) ) ) ) |
| 14 | 13 | com23 | ⊢ ( ( 𝑥 ∈ ℤ ∧ 𝐴 ∈ ℝ ) → ( ( 𝑥 − 1 ) < 𝐴 → ( 𝑦 ∈ ℤ → ( 𝐴 ≤ 𝑦 → 𝑥 ≤ 𝑦 ) ) ) ) |
| 15 | 14 | ralrimdv | ⊢ ( ( 𝑥 ∈ ℤ ∧ 𝐴 ∈ ℝ ) → ( ( 𝑥 − 1 ) < 𝐴 → ∀ 𝑦 ∈ ℤ ( 𝐴 ≤ 𝑦 → 𝑥 ≤ 𝑦 ) ) ) |
| 16 | 5 | ltnrd | ⊢ ( 𝑥 ∈ ℤ → ¬ ( 𝑥 − 1 ) < ( 𝑥 − 1 ) ) |
| 17 | peano2zm | ⊢ ( 𝑥 ∈ ℤ → ( 𝑥 − 1 ) ∈ ℤ ) | |
| 18 | zlem1lt | ⊢ ( ( 𝑥 ∈ ℤ ∧ ( 𝑥 − 1 ) ∈ ℤ ) → ( 𝑥 ≤ ( 𝑥 − 1 ) ↔ ( 𝑥 − 1 ) < ( 𝑥 − 1 ) ) ) | |
| 19 | 17 18 | mpdan | ⊢ ( 𝑥 ∈ ℤ → ( 𝑥 ≤ ( 𝑥 − 1 ) ↔ ( 𝑥 − 1 ) < ( 𝑥 − 1 ) ) ) |
| 20 | 16 19 | mtbird | ⊢ ( 𝑥 ∈ ℤ → ¬ 𝑥 ≤ ( 𝑥 − 1 ) ) |
| 21 | 20 | ad2antrr | ⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝐴 ∈ ℝ ) ∧ ∀ 𝑦 ∈ ℤ ( 𝐴 ≤ 𝑦 → 𝑥 ≤ 𝑦 ) ) → ¬ 𝑥 ≤ ( 𝑥 − 1 ) ) |
| 22 | lenlt | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝑥 − 1 ) ∈ ℝ ) → ( 𝐴 ≤ ( 𝑥 − 1 ) ↔ ¬ ( 𝑥 − 1 ) < 𝐴 ) ) | |
| 23 | 5 22 | sylan2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ ) → ( 𝐴 ≤ ( 𝑥 − 1 ) ↔ ¬ ( 𝑥 − 1 ) < 𝐴 ) ) |
| 24 | 23 | ancoms | ⊢ ( ( 𝑥 ∈ ℤ ∧ 𝐴 ∈ ℝ ) → ( 𝐴 ≤ ( 𝑥 − 1 ) ↔ ¬ ( 𝑥 − 1 ) < 𝐴 ) ) |
| 25 | 24 | adantr | ⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝐴 ∈ ℝ ) ∧ ∀ 𝑦 ∈ ℤ ( 𝐴 ≤ 𝑦 → 𝑥 ≤ 𝑦 ) ) → ( 𝐴 ≤ ( 𝑥 − 1 ) ↔ ¬ ( 𝑥 − 1 ) < 𝐴 ) ) |
| 26 | breq2 | ⊢ ( 𝑦 = ( 𝑥 − 1 ) → ( 𝐴 ≤ 𝑦 ↔ 𝐴 ≤ ( 𝑥 − 1 ) ) ) | |
| 27 | breq2 | ⊢ ( 𝑦 = ( 𝑥 − 1 ) → ( 𝑥 ≤ 𝑦 ↔ 𝑥 ≤ ( 𝑥 − 1 ) ) ) | |
| 28 | 26 27 | imbi12d | ⊢ ( 𝑦 = ( 𝑥 − 1 ) → ( ( 𝐴 ≤ 𝑦 → 𝑥 ≤ 𝑦 ) ↔ ( 𝐴 ≤ ( 𝑥 − 1 ) → 𝑥 ≤ ( 𝑥 − 1 ) ) ) ) |
| 29 | 28 | rspcv | ⊢ ( ( 𝑥 − 1 ) ∈ ℤ → ( ∀ 𝑦 ∈ ℤ ( 𝐴 ≤ 𝑦 → 𝑥 ≤ 𝑦 ) → ( 𝐴 ≤ ( 𝑥 − 1 ) → 𝑥 ≤ ( 𝑥 − 1 ) ) ) ) |
| 30 | 17 29 | syl | ⊢ ( 𝑥 ∈ ℤ → ( ∀ 𝑦 ∈ ℤ ( 𝐴 ≤ 𝑦 → 𝑥 ≤ 𝑦 ) → ( 𝐴 ≤ ( 𝑥 − 1 ) → 𝑥 ≤ ( 𝑥 − 1 ) ) ) ) |
| 31 | 30 | imp | ⊢ ( ( 𝑥 ∈ ℤ ∧ ∀ 𝑦 ∈ ℤ ( 𝐴 ≤ 𝑦 → 𝑥 ≤ 𝑦 ) ) → ( 𝐴 ≤ ( 𝑥 − 1 ) → 𝑥 ≤ ( 𝑥 − 1 ) ) ) |
| 32 | 31 | adantlr | ⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝐴 ∈ ℝ ) ∧ ∀ 𝑦 ∈ ℤ ( 𝐴 ≤ 𝑦 → 𝑥 ≤ 𝑦 ) ) → ( 𝐴 ≤ ( 𝑥 − 1 ) → 𝑥 ≤ ( 𝑥 − 1 ) ) ) |
| 33 | 25 32 | sylbird | ⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝐴 ∈ ℝ ) ∧ ∀ 𝑦 ∈ ℤ ( 𝐴 ≤ 𝑦 → 𝑥 ≤ 𝑦 ) ) → ( ¬ ( 𝑥 − 1 ) < 𝐴 → 𝑥 ≤ ( 𝑥 − 1 ) ) ) |
| 34 | 21 33 | mt3d | ⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝐴 ∈ ℝ ) ∧ ∀ 𝑦 ∈ ℤ ( 𝐴 ≤ 𝑦 → 𝑥 ≤ 𝑦 ) ) → ( 𝑥 − 1 ) < 𝐴 ) |
| 35 | 34 | ex | ⊢ ( ( 𝑥 ∈ ℤ ∧ 𝐴 ∈ ℝ ) → ( ∀ 𝑦 ∈ ℤ ( 𝐴 ≤ 𝑦 → 𝑥 ≤ 𝑦 ) → ( 𝑥 − 1 ) < 𝐴 ) ) |
| 36 | 15 35 | impbid | ⊢ ( ( 𝑥 ∈ ℤ ∧ 𝐴 ∈ ℝ ) → ( ( 𝑥 − 1 ) < 𝐴 ↔ ∀ 𝑦 ∈ ℤ ( 𝐴 ≤ 𝑦 → 𝑥 ≤ 𝑦 ) ) ) |
| 37 | 1re | ⊢ 1 ∈ ℝ | |
| 38 | ltsubadd | ⊢ ( ( 𝑥 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( ( 𝑥 − 1 ) < 𝐴 ↔ 𝑥 < ( 𝐴 + 1 ) ) ) | |
| 39 | 37 38 | mp3an2 | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( ( 𝑥 − 1 ) < 𝐴 ↔ 𝑥 < ( 𝐴 + 1 ) ) ) |
| 40 | 3 39 | sylan | ⊢ ( ( 𝑥 ∈ ℤ ∧ 𝐴 ∈ ℝ ) → ( ( 𝑥 − 1 ) < 𝐴 ↔ 𝑥 < ( 𝐴 + 1 ) ) ) |
| 41 | 36 40 | bitr3d | ⊢ ( ( 𝑥 ∈ ℤ ∧ 𝐴 ∈ ℝ ) → ( ∀ 𝑦 ∈ ℤ ( 𝐴 ≤ 𝑦 → 𝑥 ≤ 𝑦 ) ↔ 𝑥 < ( 𝐴 + 1 ) ) ) |
| 42 | 41 | ancoms | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ ) → ( ∀ 𝑦 ∈ ℤ ( 𝐴 ≤ 𝑦 → 𝑥 ≤ 𝑦 ) ↔ 𝑥 < ( 𝐴 + 1 ) ) ) |
| 43 | 42 | anbi2d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ ) → ( ( 𝐴 ≤ 𝑥 ∧ ∀ 𝑦 ∈ ℤ ( 𝐴 ≤ 𝑦 → 𝑥 ≤ 𝑦 ) ) ↔ ( 𝐴 ≤ 𝑥 ∧ 𝑥 < ( 𝐴 + 1 ) ) ) ) |
| 44 | 43 | reubidva | ⊢ ( 𝐴 ∈ ℝ → ( ∃! 𝑥 ∈ ℤ ( 𝐴 ≤ 𝑥 ∧ ∀ 𝑦 ∈ ℤ ( 𝐴 ≤ 𝑦 → 𝑥 ≤ 𝑦 ) ) ↔ ∃! 𝑥 ∈ ℤ ( 𝐴 ≤ 𝑥 ∧ 𝑥 < ( 𝐴 + 1 ) ) ) ) |
| 45 | 1 44 | mpbid | ⊢ ( 𝐴 ∈ ℝ → ∃! 𝑥 ∈ ℤ ( 𝐴 ≤ 𝑥 ∧ 𝑥 < ( 𝐴 + 1 ) ) ) |