This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Reverse direction of isclm . (Contributed by Mario Carneiro, 30-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | clm0.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| Assertion | isclmi | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝐹 = ( ℂfld ↾s 𝐾 ) ∧ 𝐾 ∈ ( SubRing ‘ ℂfld ) ) → 𝑊 ∈ ℂMod ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clm0.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 2 | simp1 | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝐹 = ( ℂfld ↾s 𝐾 ) ∧ 𝐾 ∈ ( SubRing ‘ ℂfld ) ) → 𝑊 ∈ LMod ) | |
| 3 | simp2 | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝐹 = ( ℂfld ↾s 𝐾 ) ∧ 𝐾 ∈ ( SubRing ‘ ℂfld ) ) → 𝐹 = ( ℂfld ↾s 𝐾 ) ) | |
| 4 | eqid | ⊢ ( ℂfld ↾s 𝐾 ) = ( ℂfld ↾s 𝐾 ) | |
| 5 | 4 | subrgbas | ⊢ ( 𝐾 ∈ ( SubRing ‘ ℂfld ) → 𝐾 = ( Base ‘ ( ℂfld ↾s 𝐾 ) ) ) |
| 6 | 5 | 3ad2ant3 | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝐹 = ( ℂfld ↾s 𝐾 ) ∧ 𝐾 ∈ ( SubRing ‘ ℂfld ) ) → 𝐾 = ( Base ‘ ( ℂfld ↾s 𝐾 ) ) ) |
| 7 | 3 | fveq2d | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝐹 = ( ℂfld ↾s 𝐾 ) ∧ 𝐾 ∈ ( SubRing ‘ ℂfld ) ) → ( Base ‘ 𝐹 ) = ( Base ‘ ( ℂfld ↾s 𝐾 ) ) ) |
| 8 | 6 7 | eqtr4d | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝐹 = ( ℂfld ↾s 𝐾 ) ∧ 𝐾 ∈ ( SubRing ‘ ℂfld ) ) → 𝐾 = ( Base ‘ 𝐹 ) ) |
| 9 | 8 | oveq2d | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝐹 = ( ℂfld ↾s 𝐾 ) ∧ 𝐾 ∈ ( SubRing ‘ ℂfld ) ) → ( ℂfld ↾s 𝐾 ) = ( ℂfld ↾s ( Base ‘ 𝐹 ) ) ) |
| 10 | 3 9 | eqtrd | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝐹 = ( ℂfld ↾s 𝐾 ) ∧ 𝐾 ∈ ( SubRing ‘ ℂfld ) ) → 𝐹 = ( ℂfld ↾s ( Base ‘ 𝐹 ) ) ) |
| 11 | simp3 | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝐹 = ( ℂfld ↾s 𝐾 ) ∧ 𝐾 ∈ ( SubRing ‘ ℂfld ) ) → 𝐾 ∈ ( SubRing ‘ ℂfld ) ) | |
| 12 | 8 11 | eqeltrrd | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝐹 = ( ℂfld ↾s 𝐾 ) ∧ 𝐾 ∈ ( SubRing ‘ ℂfld ) ) → ( Base ‘ 𝐹 ) ∈ ( SubRing ‘ ℂfld ) ) |
| 13 | eqid | ⊢ ( Base ‘ 𝐹 ) = ( Base ‘ 𝐹 ) | |
| 14 | 1 13 | isclm | ⊢ ( 𝑊 ∈ ℂMod ↔ ( 𝑊 ∈ LMod ∧ 𝐹 = ( ℂfld ↾s ( Base ‘ 𝐹 ) ) ∧ ( Base ‘ 𝐹 ) ∈ ( SubRing ‘ ℂfld ) ) ) |
| 15 | 2 10 12 14 | syl3anbrc | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝐹 = ( ℂfld ↾s 𝐾 ) ∧ 𝐾 ∈ ( SubRing ‘ ℂfld ) ) → 𝑊 ∈ ℂMod ) |