This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The ZZ -module operation turns an arbitrary abelian group into a subcomplex module. (Contributed by Mario Carneiro, 30-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | zlmclm.w | ||
| Assertion | zlmclm |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zlmclm.w | ||
| 2 | 1 | zlmlmod | |
| 3 | 2 | biimpi | |
| 4 | 1 | zlmsca | |
| 5 | df-zring | ||
| 6 | 4 5 | eqtr3di | |
| 7 | zsubrg | ||
| 8 | 7 | a1i | |
| 9 | eqid | ||
| 10 | 9 | isclmi | |
| 11 | 3 6 8 10 | syl3anc | |
| 12 | clmlmod | ||
| 13 | 12 2 | sylibr | |
| 14 | 11 13 | impbii |