This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The ZZ -module operation turns an arbitrary abelian group into a subcomplex module. (Contributed by Mario Carneiro, 30-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | zlmclm.w | |- W = ( ZMod ` G ) |
|
| Assertion | zlmclm | |- ( G e. Abel <-> W e. CMod ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zlmclm.w | |- W = ( ZMod ` G ) |
|
| 2 | 1 | zlmlmod | |- ( G e. Abel <-> W e. LMod ) |
| 3 | 2 | biimpi | |- ( G e. Abel -> W e. LMod ) |
| 4 | 1 | zlmsca | |- ( G e. Abel -> ZZring = ( Scalar ` W ) ) |
| 5 | df-zring | |- ZZring = ( CCfld |`s ZZ ) |
|
| 6 | 4 5 | eqtr3di | |- ( G e. Abel -> ( Scalar ` W ) = ( CCfld |`s ZZ ) ) |
| 7 | zsubrg | |- ZZ e. ( SubRing ` CCfld ) |
|
| 8 | 7 | a1i | |- ( G e. Abel -> ZZ e. ( SubRing ` CCfld ) ) |
| 9 | eqid | |- ( Scalar ` W ) = ( Scalar ` W ) |
|
| 10 | 9 | isclmi | |- ( ( W e. LMod /\ ( Scalar ` W ) = ( CCfld |`s ZZ ) /\ ZZ e. ( SubRing ` CCfld ) ) -> W e. CMod ) |
| 11 | 3 6 8 10 | syl3anc | |- ( G e. Abel -> W e. CMod ) |
| 12 | clmlmod | |- ( W e. CMod -> W e. LMod ) |
|
| 13 | 12 2 | sylibr | |- ( W e. CMod -> G e. Abel ) |
| 14 | 11 13 | impbii | |- ( G e. Abel <-> W e. CMod ) |