This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Induction on the integers from M to N inclusive, a deduction version. (Contributed by metakunt, 12-May-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fzindd.1 | ⊢ ( 𝑥 = 𝑀 → ( 𝜓 ↔ 𝜒 ) ) | |
| fzindd.2 | ⊢ ( 𝑥 = 𝑦 → ( 𝜓 ↔ 𝜃 ) ) | ||
| fzindd.3 | ⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝜓 ↔ 𝜏 ) ) | ||
| fzindd.4 | ⊢ ( 𝑥 = 𝐴 → ( 𝜓 ↔ 𝜂 ) ) | ||
| fzindd.5 | ⊢ ( 𝜑 → 𝜒 ) | ||
| fzindd.6 | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℤ ∧ 𝑀 ≤ 𝑦 ∧ 𝑦 < 𝑁 ) ∧ 𝜃 ) → 𝜏 ) | ||
| fzindd.7 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| fzindd.8 | ⊢ ( 𝜑 → 𝑁 ∈ ℤ ) | ||
| fzindd.9 | ⊢ ( 𝜑 → 𝑀 ≤ 𝑁 ) | ||
| Assertion | fzindd | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ ℤ ∧ 𝑀 ≤ 𝐴 ∧ 𝐴 ≤ 𝑁 ) ) → 𝜂 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fzindd.1 | ⊢ ( 𝑥 = 𝑀 → ( 𝜓 ↔ 𝜒 ) ) | |
| 2 | fzindd.2 | ⊢ ( 𝑥 = 𝑦 → ( 𝜓 ↔ 𝜃 ) ) | |
| 3 | fzindd.3 | ⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝜓 ↔ 𝜏 ) ) | |
| 4 | fzindd.4 | ⊢ ( 𝑥 = 𝐴 → ( 𝜓 ↔ 𝜂 ) ) | |
| 5 | fzindd.5 | ⊢ ( 𝜑 → 𝜒 ) | |
| 6 | fzindd.6 | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℤ ∧ 𝑀 ≤ 𝑦 ∧ 𝑦 < 𝑁 ) ∧ 𝜃 ) → 𝜏 ) | |
| 7 | fzindd.7 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 8 | fzindd.8 | ⊢ ( 𝜑 → 𝑁 ∈ ℤ ) | |
| 9 | fzindd.9 | ⊢ ( 𝜑 → 𝑀 ≤ 𝑁 ) | |
| 10 | 7 8 | jca | ⊢ ( 𝜑 → ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) |
| 11 | 1 | imbi2d | ⊢ ( 𝑥 = 𝑀 → ( ( 𝜑 → 𝜓 ) ↔ ( 𝜑 → 𝜒 ) ) ) |
| 12 | 2 | imbi2d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝜑 → 𝜓 ) ↔ ( 𝜑 → 𝜃 ) ) ) |
| 13 | 3 | imbi2d | ⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( 𝜑 → 𝜓 ) ↔ ( 𝜑 → 𝜏 ) ) ) |
| 14 | 4 | imbi2d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝜑 → 𝜓 ) ↔ ( 𝜑 → 𝜂 ) ) ) |
| 15 | 5 | a1i | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁 ) → ( 𝜑 → 𝜒 ) ) |
| 16 | 6 | 3expa | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℤ ∧ 𝑀 ≤ 𝑦 ∧ 𝑦 < 𝑁 ) ) ∧ 𝜃 ) → 𝜏 ) |
| 17 | 16 | ex | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℤ ∧ 𝑀 ≤ 𝑦 ∧ 𝑦 < 𝑁 ) ) → ( 𝜃 → 𝜏 ) ) |
| 18 | 17 | expcom | ⊢ ( ( 𝑦 ∈ ℤ ∧ 𝑀 ≤ 𝑦 ∧ 𝑦 < 𝑁 ) → ( 𝜑 → ( 𝜃 → 𝜏 ) ) ) |
| 19 | 18 | a2d | ⊢ ( ( 𝑦 ∈ ℤ ∧ 𝑀 ≤ 𝑦 ∧ 𝑦 < 𝑁 ) → ( ( 𝜑 → 𝜃 ) → ( 𝜑 → 𝜏 ) ) ) |
| 20 | 19 | adantl | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑦 ∈ ℤ ∧ 𝑀 ≤ 𝑦 ∧ 𝑦 < 𝑁 ) ) → ( ( 𝜑 → 𝜃 ) → ( 𝜑 → 𝜏 ) ) ) |
| 21 | 11 12 13 14 15 20 | fzind | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝐴 ∈ ℤ ∧ 𝑀 ≤ 𝐴 ∧ 𝐴 ≤ 𝑁 ) ) → ( 𝜑 → 𝜂 ) ) |
| 22 | 10 21 | sylan | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ ℤ ∧ 𝑀 ≤ 𝐴 ∧ 𝐴 ≤ 𝑁 ) ) → ( 𝜑 → 𝜂 ) ) |
| 23 | 22 | imp | ⊢ ( ( ( 𝜑 ∧ ( 𝐴 ∈ ℤ ∧ 𝑀 ≤ 𝐴 ∧ 𝐴 ≤ 𝑁 ) ) ∧ 𝜑 ) → 𝜂 ) |
| 24 | 23 | anabss1 | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ ℤ ∧ 𝑀 ≤ 𝐴 ∧ 𝐴 ≤ 𝑁 ) ) → 𝜂 ) |