This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Axiom of Regularity with class variables. (Contributed by NM, 5-Aug-1994) Replace sethood hypothesis with sethood antecedent. (Revised by BJ, 27-Apr-2021) Avoid ax-10 and ax-12 . (Revised by TM, 31-Dec-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | zfregcl | ⊢ ( 𝐴 ∈ 𝑉 → ( ∃ 𝑥 𝑥 ∈ 𝐴 → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝑥 ¬ 𝑦 ∈ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 | ⊢ ( 𝑧 = 𝐴 → ( 𝑥 ∈ 𝑧 ↔ 𝑥 ∈ 𝐴 ) ) | |
| 2 | 1 | exbidv | ⊢ ( 𝑧 = 𝐴 → ( ∃ 𝑥 𝑥 ∈ 𝑧 ↔ ∃ 𝑥 𝑥 ∈ 𝐴 ) ) |
| 3 | eleq2 | ⊢ ( 𝑧 = 𝐴 → ( 𝑦 ∈ 𝑧 ↔ 𝑦 ∈ 𝐴 ) ) | |
| 4 | 3 | notbid | ⊢ ( 𝑧 = 𝐴 → ( ¬ 𝑦 ∈ 𝑧 ↔ ¬ 𝑦 ∈ 𝐴 ) ) |
| 5 | 4 | ralbidv | ⊢ ( 𝑧 = 𝐴 → ( ∀ 𝑦 ∈ 𝑥 ¬ 𝑦 ∈ 𝑧 ↔ ∀ 𝑦 ∈ 𝑥 ¬ 𝑦 ∈ 𝐴 ) ) |
| 6 | 5 | rexeqbi1dv | ⊢ ( 𝑧 = 𝐴 → ( ∃ 𝑥 ∈ 𝑧 ∀ 𝑦 ∈ 𝑥 ¬ 𝑦 ∈ 𝑧 ↔ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝑥 ¬ 𝑦 ∈ 𝐴 ) ) |
| 7 | 2 6 | imbi12d | ⊢ ( 𝑧 = 𝐴 → ( ( ∃ 𝑥 𝑥 ∈ 𝑧 → ∃ 𝑥 ∈ 𝑧 ∀ 𝑦 ∈ 𝑥 ¬ 𝑦 ∈ 𝑧 ) ↔ ( ∃ 𝑥 𝑥 ∈ 𝐴 → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝑥 ¬ 𝑦 ∈ 𝐴 ) ) ) |
| 8 | ax-reg | ⊢ ( ∃ 𝑥 𝑥 ∈ 𝑧 → ∃ 𝑥 ( 𝑥 ∈ 𝑧 ∧ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ¬ 𝑦 ∈ 𝑧 ) ) ) | |
| 9 | df-ral | ⊢ ( ∀ 𝑦 ∈ 𝑥 ¬ 𝑦 ∈ 𝑧 ↔ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ¬ 𝑦 ∈ 𝑧 ) ) | |
| 10 | 9 | rexbii | ⊢ ( ∃ 𝑥 ∈ 𝑧 ∀ 𝑦 ∈ 𝑥 ¬ 𝑦 ∈ 𝑧 ↔ ∃ 𝑥 ∈ 𝑧 ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ¬ 𝑦 ∈ 𝑧 ) ) |
| 11 | df-rex | ⊢ ( ∃ 𝑥 ∈ 𝑧 ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ¬ 𝑦 ∈ 𝑧 ) ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑧 ∧ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ¬ 𝑦 ∈ 𝑧 ) ) ) | |
| 12 | 10 11 | bitr2i | ⊢ ( ∃ 𝑥 ( 𝑥 ∈ 𝑧 ∧ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ¬ 𝑦 ∈ 𝑧 ) ) ↔ ∃ 𝑥 ∈ 𝑧 ∀ 𝑦 ∈ 𝑥 ¬ 𝑦 ∈ 𝑧 ) |
| 13 | 8 12 | sylib | ⊢ ( ∃ 𝑥 𝑥 ∈ 𝑧 → ∃ 𝑥 ∈ 𝑧 ∀ 𝑦 ∈ 𝑥 ¬ 𝑦 ∈ 𝑧 ) |
| 14 | 7 13 | vtoclg | ⊢ ( 𝐴 ∈ 𝑉 → ( ∃ 𝑥 𝑥 ∈ 𝐴 → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝑥 ¬ 𝑦 ∈ 𝐴 ) ) |