This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for zeroopropd . (Contributed by Zhi Wang, 26-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | initopropd.1 | |- ( ph -> ( Homf ` C ) = ( Homf ` D ) ) |
|
| initopropd.2 | |- ( ph -> ( comf ` C ) = ( comf ` D ) ) |
||
| initopropdlem.1 | |- ( ph -> -. C e. _V ) |
||
| Assertion | zeroopropdlem | |- ( ph -> ( ZeroO ` C ) = ( ZeroO ` D ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | initopropd.1 | |- ( ph -> ( Homf ` C ) = ( Homf ` D ) ) |
|
| 2 | initopropd.2 | |- ( ph -> ( comf ` C ) = ( comf ` D ) ) |
|
| 3 | initopropdlem.1 | |- ( ph -> -. C e. _V ) |
|
| 4 | zeroofn | |- ZeroO Fn Cat |
|
| 5 | ssv | |- Cat C_ _V |
|
| 6 | simpr | |- ( ( ph /\ D e. Cat ) -> D e. Cat ) |
|
| 7 | eqid | |- ( Base ` D ) = ( Base ` D ) |
|
| 8 | eqid | |- ( Hom ` D ) = ( Hom ` D ) |
|
| 9 | 6 7 8 | zerooval | |- ( ( ph /\ D e. Cat ) -> ( ZeroO ` D ) = ( ( InitO ` D ) i^i ( TermO ` D ) ) ) |
| 10 | 1 2 3 | initopropdlem | |- ( ph -> ( InitO ` C ) = ( InitO ` D ) ) |
| 11 | fvprc | |- ( -. C e. _V -> ( InitO ` C ) = (/) ) |
|
| 12 | 3 11 | syl | |- ( ph -> ( InitO ` C ) = (/) ) |
| 13 | 10 12 | eqtr3d | |- ( ph -> ( InitO ` D ) = (/) ) |
| 14 | 13 | adantr | |- ( ( ph /\ D e. Cat ) -> ( InitO ` D ) = (/) ) |
| 15 | 1 2 3 | termopropdlem | |- ( ph -> ( TermO ` C ) = ( TermO ` D ) ) |
| 16 | fvprc | |- ( -. C e. _V -> ( TermO ` C ) = (/) ) |
|
| 17 | 3 16 | syl | |- ( ph -> ( TermO ` C ) = (/) ) |
| 18 | 15 17 | eqtr3d | |- ( ph -> ( TermO ` D ) = (/) ) |
| 19 | 18 | adantr | |- ( ( ph /\ D e. Cat ) -> ( TermO ` D ) = (/) ) |
| 20 | 14 19 | ineq12d | |- ( ( ph /\ D e. Cat ) -> ( ( InitO ` D ) i^i ( TermO ` D ) ) = ( (/) i^i (/) ) ) |
| 21 | inidm | |- ( (/) i^i (/) ) = (/) |
|
| 22 | 20 21 | eqtrdi | |- ( ( ph /\ D e. Cat ) -> ( ( InitO ` D ) i^i ( TermO ` D ) ) = (/) ) |
| 23 | 9 22 | eqtrd | |- ( ( ph /\ D e. Cat ) -> ( ZeroO ` D ) = (/) ) |
| 24 | 4 3 5 23 | initopropdlemlem | |- ( ph -> ( ZeroO ` C ) = ( ZeroO ` D ) ) |