This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The ring of integers as left module over itself is a subcomplex module, but not a subcomplex vector space. The vector operation is + , and the scalar product is x. . (Contributed by AV, 22-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | zclmncvs.z | ⊢ 𝑍 = ( ringLMod ‘ ℤring ) | |
| Assertion | zclmncvs | ⊢ ( 𝑍 ∈ ℂMod ∧ 𝑍 ∉ ℂVec ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zclmncvs.z | ⊢ 𝑍 = ( ringLMod ‘ ℤring ) | |
| 2 | zringring | ⊢ ℤring ∈ Ring | |
| 3 | rlmlmod | ⊢ ( ℤring ∈ Ring → ( ringLMod ‘ ℤring ) ∈ LMod ) | |
| 4 | 2 3 | ax-mp | ⊢ ( ringLMod ‘ ℤring ) ∈ LMod |
| 5 | rlmsca | ⊢ ( ℤring ∈ Ring → ℤring = ( Scalar ‘ ( ringLMod ‘ ℤring ) ) ) | |
| 6 | 2 5 | ax-mp | ⊢ ℤring = ( Scalar ‘ ( ringLMod ‘ ℤring ) ) |
| 7 | df-zring | ⊢ ℤring = ( ℂfld ↾s ℤ ) | |
| 8 | 6 7 | eqtr3i | ⊢ ( Scalar ‘ ( ringLMod ‘ ℤring ) ) = ( ℂfld ↾s ℤ ) |
| 9 | zsubrg | ⊢ ℤ ∈ ( SubRing ‘ ℂfld ) | |
| 10 | eqid | ⊢ ( Scalar ‘ ( ringLMod ‘ ℤring ) ) = ( Scalar ‘ ( ringLMod ‘ ℤring ) ) | |
| 11 | 10 | isclmi | ⊢ ( ( ( ringLMod ‘ ℤring ) ∈ LMod ∧ ( Scalar ‘ ( ringLMod ‘ ℤring ) ) = ( ℂfld ↾s ℤ ) ∧ ℤ ∈ ( SubRing ‘ ℂfld ) ) → ( ringLMod ‘ ℤring ) ∈ ℂMod ) |
| 12 | 4 8 9 11 | mp3an | ⊢ ( ringLMod ‘ ℤring ) ∈ ℂMod |
| 13 | 1 | eleq1i | ⊢ ( 𝑍 ∈ ℂMod ↔ ( ringLMod ‘ ℤring ) ∈ ℂMod ) |
| 14 | 12 13 | mpbir | ⊢ 𝑍 ∈ ℂMod |
| 15 | zringndrg | ⊢ ℤring ∉ DivRing | |
| 16 | 15 | neli | ⊢ ¬ ℤring ∈ DivRing |
| 17 | 5 | eqcomd | ⊢ ( ℤring ∈ Ring → ( Scalar ‘ ( ringLMod ‘ ℤring ) ) = ℤring ) |
| 18 | 2 17 | ax-mp | ⊢ ( Scalar ‘ ( ringLMod ‘ ℤring ) ) = ℤring |
| 19 | 18 | eleq1i | ⊢ ( ( Scalar ‘ ( ringLMod ‘ ℤring ) ) ∈ DivRing ↔ ℤring ∈ DivRing ) |
| 20 | 16 19 | mtbir | ⊢ ¬ ( Scalar ‘ ( ringLMod ‘ ℤring ) ) ∈ DivRing |
| 21 | 20 | intnan | ⊢ ¬ ( ( ringLMod ‘ ℤring ) ∈ LMod ∧ ( Scalar ‘ ( ringLMod ‘ ℤring ) ) ∈ DivRing ) |
| 22 | 10 | islvec | ⊢ ( ( ringLMod ‘ ℤring ) ∈ LVec ↔ ( ( ringLMod ‘ ℤring ) ∈ LMod ∧ ( Scalar ‘ ( ringLMod ‘ ℤring ) ) ∈ DivRing ) ) |
| 23 | 21 22 | mtbir | ⊢ ¬ ( ringLMod ‘ ℤring ) ∈ LVec |
| 24 | 23 | olci | ⊢ ( ¬ ( ringLMod ‘ ℤring ) ∈ ℂMod ∨ ¬ ( ringLMod ‘ ℤring ) ∈ LVec ) |
| 25 | df-nel | ⊢ ( 𝑍 ∉ ℂVec ↔ ¬ 𝑍 ∈ ℂVec ) | |
| 26 | ianor | ⊢ ( ¬ ( ( ringLMod ‘ ℤring ) ∈ ℂMod ∧ ( ringLMod ‘ ℤring ) ∈ LVec ) ↔ ( ¬ ( ringLMod ‘ ℤring ) ∈ ℂMod ∨ ¬ ( ringLMod ‘ ℤring ) ∈ LVec ) ) | |
| 27 | elin | ⊢ ( ( ringLMod ‘ ℤring ) ∈ ( ℂMod ∩ LVec ) ↔ ( ( ringLMod ‘ ℤring ) ∈ ℂMod ∧ ( ringLMod ‘ ℤring ) ∈ LVec ) ) | |
| 28 | 26 27 | xchnxbir | ⊢ ( ¬ ( ringLMod ‘ ℤring ) ∈ ( ℂMod ∩ LVec ) ↔ ( ¬ ( ringLMod ‘ ℤring ) ∈ ℂMod ∨ ¬ ( ringLMod ‘ ℤring ) ∈ LVec ) ) |
| 29 | df-cvs | ⊢ ℂVec = ( ℂMod ∩ LVec ) | |
| 30 | 1 29 | eleq12i | ⊢ ( 𝑍 ∈ ℂVec ↔ ( ringLMod ‘ ℤring ) ∈ ( ℂMod ∩ LVec ) ) |
| 31 | 28 30 | xchnxbir | ⊢ ( ¬ 𝑍 ∈ ℂVec ↔ ( ¬ ( ringLMod ‘ ℤring ) ∈ ℂMod ∨ ¬ ( ringLMod ‘ ℤring ) ∈ LVec ) ) |
| 32 | 25 31 | bitri | ⊢ ( 𝑍 ∉ ℂVec ↔ ( ¬ ( ringLMod ‘ ℤring ) ∈ ℂMod ∨ ¬ ( ringLMod ‘ ℤring ) ∈ LVec ) ) |
| 33 | 24 32 | mpbir | ⊢ 𝑍 ∉ ℂVec |
| 34 | 14 33 | pm3.2i | ⊢ ( 𝑍 ∈ ℂMod ∧ 𝑍 ∉ ℂVec ) |