This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The ring of integers as left module over itself is a subcomplex module, but not a subcomplex vector space. The vector operation is + , and the scalar product is x. . (Contributed by AV, 22-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | zclmncvs.z | |- Z = ( ringLMod ` ZZring ) |
|
| Assertion | zclmncvs | |- ( Z e. CMod /\ Z e/ CVec ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zclmncvs.z | |- Z = ( ringLMod ` ZZring ) |
|
| 2 | zringring | |- ZZring e. Ring |
|
| 3 | rlmlmod | |- ( ZZring e. Ring -> ( ringLMod ` ZZring ) e. LMod ) |
|
| 4 | 2 3 | ax-mp | |- ( ringLMod ` ZZring ) e. LMod |
| 5 | rlmsca | |- ( ZZring e. Ring -> ZZring = ( Scalar ` ( ringLMod ` ZZring ) ) ) |
|
| 6 | 2 5 | ax-mp | |- ZZring = ( Scalar ` ( ringLMod ` ZZring ) ) |
| 7 | df-zring | |- ZZring = ( CCfld |`s ZZ ) |
|
| 8 | 6 7 | eqtr3i | |- ( Scalar ` ( ringLMod ` ZZring ) ) = ( CCfld |`s ZZ ) |
| 9 | zsubrg | |- ZZ e. ( SubRing ` CCfld ) |
|
| 10 | eqid | |- ( Scalar ` ( ringLMod ` ZZring ) ) = ( Scalar ` ( ringLMod ` ZZring ) ) |
|
| 11 | 10 | isclmi | |- ( ( ( ringLMod ` ZZring ) e. LMod /\ ( Scalar ` ( ringLMod ` ZZring ) ) = ( CCfld |`s ZZ ) /\ ZZ e. ( SubRing ` CCfld ) ) -> ( ringLMod ` ZZring ) e. CMod ) |
| 12 | 4 8 9 11 | mp3an | |- ( ringLMod ` ZZring ) e. CMod |
| 13 | 1 | eleq1i | |- ( Z e. CMod <-> ( ringLMod ` ZZring ) e. CMod ) |
| 14 | 12 13 | mpbir | |- Z e. CMod |
| 15 | zringndrg | |- ZZring e/ DivRing |
|
| 16 | 15 | neli | |- -. ZZring e. DivRing |
| 17 | 5 | eqcomd | |- ( ZZring e. Ring -> ( Scalar ` ( ringLMod ` ZZring ) ) = ZZring ) |
| 18 | 2 17 | ax-mp | |- ( Scalar ` ( ringLMod ` ZZring ) ) = ZZring |
| 19 | 18 | eleq1i | |- ( ( Scalar ` ( ringLMod ` ZZring ) ) e. DivRing <-> ZZring e. DivRing ) |
| 20 | 16 19 | mtbir | |- -. ( Scalar ` ( ringLMod ` ZZring ) ) e. DivRing |
| 21 | 20 | intnan | |- -. ( ( ringLMod ` ZZring ) e. LMod /\ ( Scalar ` ( ringLMod ` ZZring ) ) e. DivRing ) |
| 22 | 10 | islvec | |- ( ( ringLMod ` ZZring ) e. LVec <-> ( ( ringLMod ` ZZring ) e. LMod /\ ( Scalar ` ( ringLMod ` ZZring ) ) e. DivRing ) ) |
| 23 | 21 22 | mtbir | |- -. ( ringLMod ` ZZring ) e. LVec |
| 24 | 23 | olci | |- ( -. ( ringLMod ` ZZring ) e. CMod \/ -. ( ringLMod ` ZZring ) e. LVec ) |
| 25 | df-nel | |- ( Z e/ CVec <-> -. Z e. CVec ) |
|
| 26 | ianor | |- ( -. ( ( ringLMod ` ZZring ) e. CMod /\ ( ringLMod ` ZZring ) e. LVec ) <-> ( -. ( ringLMod ` ZZring ) e. CMod \/ -. ( ringLMod ` ZZring ) e. LVec ) ) |
|
| 27 | elin | |- ( ( ringLMod ` ZZring ) e. ( CMod i^i LVec ) <-> ( ( ringLMod ` ZZring ) e. CMod /\ ( ringLMod ` ZZring ) e. LVec ) ) |
|
| 28 | 26 27 | xchnxbir | |- ( -. ( ringLMod ` ZZring ) e. ( CMod i^i LVec ) <-> ( -. ( ringLMod ` ZZring ) e. CMod \/ -. ( ringLMod ` ZZring ) e. LVec ) ) |
| 29 | df-cvs | |- CVec = ( CMod i^i LVec ) |
|
| 30 | 1 29 | eleq12i | |- ( Z e. CVec <-> ( ringLMod ` ZZring ) e. ( CMod i^i LVec ) ) |
| 31 | 28 30 | xchnxbir | |- ( -. Z e. CVec <-> ( -. ( ringLMod ` ZZring ) e. CMod \/ -. ( ringLMod ` ZZring ) e. LVec ) ) |
| 32 | 25 31 | bitri | |- ( Z e/ CVec <-> ( -. ( ringLMod ` ZZring ) e. CMod \/ -. ( ringLMod ` ZZring ) e. LVec ) ) |
| 33 | 24 32 | mpbir | |- Z e/ CVec |
| 34 | 14 33 | pm3.2i | |- ( Z e. CMod /\ Z e/ CVec ) |