This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Inequality deduction for supremum of an extended real subset. (Contributed by Thierry Arnoux, 21-Mar-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | xrsupssd.1 | ⊢ ( 𝜑 → 𝐵 ⊆ 𝐶 ) | |
| xrsupssd.2 | ⊢ ( 𝜑 → 𝐶 ⊆ ℝ* ) | ||
| Assertion | xrsupssd | ⊢ ( 𝜑 → sup ( 𝐵 , ℝ* , < ) ≤ sup ( 𝐶 , ℝ* , < ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrsupssd.1 | ⊢ ( 𝜑 → 𝐵 ⊆ 𝐶 ) | |
| 2 | xrsupssd.2 | ⊢ ( 𝜑 → 𝐶 ⊆ ℝ* ) | |
| 3 | xrltso | ⊢ < Or ℝ* | |
| 4 | 3 | a1i | ⊢ ( 𝜑 → < Or ℝ* ) |
| 5 | 1 2 | sstrd | ⊢ ( 𝜑 → 𝐵 ⊆ ℝ* ) |
| 6 | xrsupss | ⊢ ( 𝐵 ⊆ ℝ* → ∃ 𝑥 ∈ ℝ* ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐵 𝑦 < 𝑧 ) ) ) | |
| 7 | 5 6 | syl | ⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ* ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐵 𝑦 < 𝑧 ) ) ) |
| 8 | xrsupss | ⊢ ( 𝐶 ⊆ ℝ* → ∃ 𝑥 ∈ ℝ* ( ∀ 𝑦 ∈ 𝐶 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐶 𝑦 < 𝑧 ) ) ) | |
| 9 | 2 8 | syl | ⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ* ( ∀ 𝑦 ∈ 𝐶 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐶 𝑦 < 𝑧 ) ) ) |
| 10 | 4 1 2 7 9 | supssd | ⊢ ( 𝜑 → ¬ sup ( 𝐶 , ℝ* , < ) < sup ( 𝐵 , ℝ* , < ) ) |
| 11 | 4 7 | supcl | ⊢ ( 𝜑 → sup ( 𝐵 , ℝ* , < ) ∈ ℝ* ) |
| 12 | 4 9 | supcl | ⊢ ( 𝜑 → sup ( 𝐶 , ℝ* , < ) ∈ ℝ* ) |
| 13 | xrlenlt | ⊢ ( ( sup ( 𝐵 , ℝ* , < ) ∈ ℝ* ∧ sup ( 𝐶 , ℝ* , < ) ∈ ℝ* ) → ( sup ( 𝐵 , ℝ* , < ) ≤ sup ( 𝐶 , ℝ* , < ) ↔ ¬ sup ( 𝐶 , ℝ* , < ) < sup ( 𝐵 , ℝ* , < ) ) ) | |
| 14 | 11 12 13 | syl2anc | ⊢ ( 𝜑 → ( sup ( 𝐵 , ℝ* , < ) ≤ sup ( 𝐶 , ℝ* , < ) ↔ ¬ sup ( 𝐶 , ℝ* , < ) < sup ( 𝐵 , ℝ* , < ) ) ) |
| 15 | 10 14 | mpbird | ⊢ ( 𝜑 → sup ( 𝐵 , ℝ* , < ) ≤ sup ( 𝐶 , ℝ* , < ) ) |