This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A supremum belongs to its base class (closure law). See also supub and suplub . (Contributed by NM, 12-Oct-2004)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | supmo.1 | ⊢ ( 𝜑 → 𝑅 Or 𝐴 ) | |
| supcl.2 | ⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐵 𝑦 𝑅 𝑧 ) ) ) | ||
| Assertion | supcl | ⊢ ( 𝜑 → sup ( 𝐵 , 𝐴 , 𝑅 ) ∈ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | supmo.1 | ⊢ ( 𝜑 → 𝑅 Or 𝐴 ) | |
| 2 | supcl.2 | ⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐵 𝑦 𝑅 𝑧 ) ) ) | |
| 3 | 1 | supval2 | ⊢ ( 𝜑 → sup ( 𝐵 , 𝐴 , 𝑅 ) = ( ℩ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐵 𝑦 𝑅 𝑧 ) ) ) ) |
| 4 | 1 2 | supeu | ⊢ ( 𝜑 → ∃! 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐵 𝑦 𝑅 𝑧 ) ) ) |
| 5 | riotacl | ⊢ ( ∃! 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐵 𝑦 𝑅 𝑧 ) ) → ( ℩ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐵 𝑦 𝑅 𝑧 ) ) ) ∈ 𝐴 ) | |
| 6 | 4 5 | syl | ⊢ ( 𝜑 → ( ℩ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐵 𝑦 𝑅 𝑧 ) ) ) ∈ 𝐴 ) |
| 7 | 3 6 | eqeltrd | ⊢ ( 𝜑 → sup ( 𝐵 , 𝐴 , 𝑅 ) ∈ 𝐴 ) |