This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Inequality deduction for supremum of a subset. (Contributed by Thierry Arnoux, 21-Mar-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | supssd.0 | ⊢ ( 𝜑 → 𝑅 Or 𝐴 ) | |
| supssd.1 | ⊢ ( 𝜑 → 𝐵 ⊆ 𝐶 ) | ||
| supssd.2 | ⊢ ( 𝜑 → 𝐶 ⊆ 𝐴 ) | ||
| supssd.3 | ⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐵 𝑦 𝑅 𝑧 ) ) ) | ||
| supssd.4 | ⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐶 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐶 𝑦 𝑅 𝑧 ) ) ) | ||
| Assertion | supssd | ⊢ ( 𝜑 → ¬ sup ( 𝐶 , 𝐴 , 𝑅 ) 𝑅 sup ( 𝐵 , 𝐴 , 𝑅 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | supssd.0 | ⊢ ( 𝜑 → 𝑅 Or 𝐴 ) | |
| 2 | supssd.1 | ⊢ ( 𝜑 → 𝐵 ⊆ 𝐶 ) | |
| 3 | supssd.2 | ⊢ ( 𝜑 → 𝐶 ⊆ 𝐴 ) | |
| 4 | supssd.3 | ⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐵 𝑦 𝑅 𝑧 ) ) ) | |
| 5 | supssd.4 | ⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐶 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐶 𝑦 𝑅 𝑧 ) ) ) | |
| 6 | 1 5 | supcl | ⊢ ( 𝜑 → sup ( 𝐶 , 𝐴 , 𝑅 ) ∈ 𝐴 ) |
| 7 | 2 | sseld | ⊢ ( 𝜑 → ( 𝑧 ∈ 𝐵 → 𝑧 ∈ 𝐶 ) ) |
| 8 | 1 5 | supub | ⊢ ( 𝜑 → ( 𝑧 ∈ 𝐶 → ¬ sup ( 𝐶 , 𝐴 , 𝑅 ) 𝑅 𝑧 ) ) |
| 9 | 7 8 | syld | ⊢ ( 𝜑 → ( 𝑧 ∈ 𝐵 → ¬ sup ( 𝐶 , 𝐴 , 𝑅 ) 𝑅 𝑧 ) ) |
| 10 | 9 | ralrimiv | ⊢ ( 𝜑 → ∀ 𝑧 ∈ 𝐵 ¬ sup ( 𝐶 , 𝐴 , 𝑅 ) 𝑅 𝑧 ) |
| 11 | 1 4 | supnub | ⊢ ( 𝜑 → ( ( sup ( 𝐶 , 𝐴 , 𝑅 ) ∈ 𝐴 ∧ ∀ 𝑧 ∈ 𝐵 ¬ sup ( 𝐶 , 𝐴 , 𝑅 ) 𝑅 𝑧 ) → ¬ sup ( 𝐶 , 𝐴 , 𝑅 ) 𝑅 sup ( 𝐵 , 𝐴 , 𝑅 ) ) ) |
| 12 | 6 10 11 | mp2and | ⊢ ( 𝜑 → ¬ sup ( 𝐶 , 𝐴 , 𝑅 ) 𝑅 sup ( 𝐵 , 𝐴 , 𝑅 ) ) |