This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Inequality deduction for supremum of an extended real subset. (Contributed by Thierry Arnoux, 21-Mar-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | xrsupssd.1 | |- ( ph -> B C_ C ) |
|
| xrsupssd.2 | |- ( ph -> C C_ RR* ) |
||
| Assertion | xrsupssd | |- ( ph -> sup ( B , RR* , < ) <_ sup ( C , RR* , < ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrsupssd.1 | |- ( ph -> B C_ C ) |
|
| 2 | xrsupssd.2 | |- ( ph -> C C_ RR* ) |
|
| 3 | xrltso | |- < Or RR* |
|
| 4 | 3 | a1i | |- ( ph -> < Or RR* ) |
| 5 | 1 2 | sstrd | |- ( ph -> B C_ RR* ) |
| 6 | xrsupss | |- ( B C_ RR* -> E. x e. RR* ( A. y e. B -. x < y /\ A. y e. RR* ( y < x -> E. z e. B y < z ) ) ) |
|
| 7 | 5 6 | syl | |- ( ph -> E. x e. RR* ( A. y e. B -. x < y /\ A. y e. RR* ( y < x -> E. z e. B y < z ) ) ) |
| 8 | xrsupss | |- ( C C_ RR* -> E. x e. RR* ( A. y e. C -. x < y /\ A. y e. RR* ( y < x -> E. z e. C y < z ) ) ) |
|
| 9 | 2 8 | syl | |- ( ph -> E. x e. RR* ( A. y e. C -. x < y /\ A. y e. RR* ( y < x -> E. z e. C y < z ) ) ) |
| 10 | 4 1 2 7 9 | supssd | |- ( ph -> -. sup ( C , RR* , < ) < sup ( B , RR* , < ) ) |
| 11 | 4 7 | supcl | |- ( ph -> sup ( B , RR* , < ) e. RR* ) |
| 12 | 4 9 | supcl | |- ( ph -> sup ( C , RR* , < ) e. RR* ) |
| 13 | xrlenlt | |- ( ( sup ( B , RR* , < ) e. RR* /\ sup ( C , RR* , < ) e. RR* ) -> ( sup ( B , RR* , < ) <_ sup ( C , RR* , < ) <-> -. sup ( C , RR* , < ) < sup ( B , RR* , < ) ) ) |
|
| 14 | 11 12 13 | syl2anc | |- ( ph -> ( sup ( B , RR* , < ) <_ sup ( C , RR* , < ) <-> -. sup ( C , RR* , < ) < sup ( B , RR* , < ) ) ) |
| 15 | 10 14 | mpbird | |- ( ph -> sup ( B , RR* , < ) <_ sup ( C , RR* , < ) ) |