This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The metric of the extended real number structure coincides with the real number metric on the reals. (Contributed by Mario Carneiro, 3-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | xrsds.d | ⊢ 𝐷 = ( dist ‘ ℝ*𝑠 ) | |
| Assertion | xrsdsreval | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 𝐷 𝐵 ) = ( abs ‘ ( 𝐴 − 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrsds.d | ⊢ 𝐷 = ( dist ‘ ℝ*𝑠 ) | |
| 2 | rexr | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℝ* ) | |
| 3 | rexr | ⊢ ( 𝐵 ∈ ℝ → 𝐵 ∈ ℝ* ) | |
| 4 | 1 | xrsdsval | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 𝐷 𝐵 ) = if ( 𝐴 ≤ 𝐵 , ( 𝐵 +𝑒 -𝑒 𝐴 ) , ( 𝐴 +𝑒 -𝑒 𝐵 ) ) ) |
| 5 | 2 3 4 | syl2an | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 𝐷 𝐵 ) = if ( 𝐴 ≤ 𝐵 , ( 𝐵 +𝑒 -𝑒 𝐴 ) , ( 𝐴 +𝑒 -𝑒 𝐵 ) ) ) |
| 6 | rexsub | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 𝐵 +𝑒 -𝑒 𝐴 ) = ( 𝐵 − 𝐴 ) ) | |
| 7 | 6 | ancoms | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐵 +𝑒 -𝑒 𝐴 ) = ( 𝐵 − 𝐴 ) ) |
| 8 | 7 | adantr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ≤ 𝐵 ) → ( 𝐵 +𝑒 -𝑒 𝐴 ) = ( 𝐵 − 𝐴 ) ) |
| 9 | abssuble0 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( abs ‘ ( 𝐴 − 𝐵 ) ) = ( 𝐵 − 𝐴 ) ) | |
| 10 | 9 | 3expa | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ≤ 𝐵 ) → ( abs ‘ ( 𝐴 − 𝐵 ) ) = ( 𝐵 − 𝐴 ) ) |
| 11 | 8 10 | eqtr4d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ≤ 𝐵 ) → ( 𝐵 +𝑒 -𝑒 𝐴 ) = ( abs ‘ ( 𝐴 − 𝐵 ) ) ) |
| 12 | rexsub | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 +𝑒 -𝑒 𝐵 ) = ( 𝐴 − 𝐵 ) ) | |
| 13 | 12 | adantr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ¬ 𝐴 ≤ 𝐵 ) → ( 𝐴 +𝑒 -𝑒 𝐵 ) = ( 𝐴 − 𝐵 ) ) |
| 14 | letric | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 ≤ 𝐵 ∨ 𝐵 ≤ 𝐴 ) ) | |
| 15 | 14 | orcanai | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ¬ 𝐴 ≤ 𝐵 ) → 𝐵 ≤ 𝐴 ) |
| 16 | abssubge0 | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐵 ≤ 𝐴 ) → ( abs ‘ ( 𝐴 − 𝐵 ) ) = ( 𝐴 − 𝐵 ) ) | |
| 17 | 16 | 3com12 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≤ 𝐴 ) → ( abs ‘ ( 𝐴 − 𝐵 ) ) = ( 𝐴 − 𝐵 ) ) |
| 18 | 17 | 3expa | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐵 ≤ 𝐴 ) → ( abs ‘ ( 𝐴 − 𝐵 ) ) = ( 𝐴 − 𝐵 ) ) |
| 19 | 15 18 | syldan | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ¬ 𝐴 ≤ 𝐵 ) → ( abs ‘ ( 𝐴 − 𝐵 ) ) = ( 𝐴 − 𝐵 ) ) |
| 20 | 13 19 | eqtr4d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ¬ 𝐴 ≤ 𝐵 ) → ( 𝐴 +𝑒 -𝑒 𝐵 ) = ( abs ‘ ( 𝐴 − 𝐵 ) ) ) |
| 21 | 11 20 | ifeqda | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → if ( 𝐴 ≤ 𝐵 , ( 𝐵 +𝑒 -𝑒 𝐴 ) , ( 𝐴 +𝑒 -𝑒 𝐵 ) ) = ( abs ‘ ( 𝐴 − 𝐵 ) ) ) |
| 22 | 5 21 | eqtrd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 𝐷 𝐵 ) = ( abs ‘ ( 𝐴 − 𝐵 ) ) ) |