This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: 'Less than' expressed in terms of 'less than or equal to'. (Contributed by Mario Carneiro, 6-Nov-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xrltlen | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 < 𝐵 ↔ ( 𝐴 ≤ 𝐵 ∧ 𝐵 ≠ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrlttri | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 < 𝐵 ↔ ¬ ( 𝐴 = 𝐵 ∨ 𝐵 < 𝐴 ) ) ) | |
| 2 | ioran | ⊢ ( ¬ ( 𝐴 = 𝐵 ∨ 𝐵 < 𝐴 ) ↔ ( ¬ 𝐴 = 𝐵 ∧ ¬ 𝐵 < 𝐴 ) ) | |
| 3 | 2 | biancomi | ⊢ ( ¬ ( 𝐴 = 𝐵 ∨ 𝐵 < 𝐴 ) ↔ ( ¬ 𝐵 < 𝐴 ∧ ¬ 𝐴 = 𝐵 ) ) |
| 4 | 1 3 | bitrdi | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 < 𝐵 ↔ ( ¬ 𝐵 < 𝐴 ∧ ¬ 𝐴 = 𝐵 ) ) ) |
| 5 | xrlenlt | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴 ) ) | |
| 6 | nesym | ⊢ ( 𝐵 ≠ 𝐴 ↔ ¬ 𝐴 = 𝐵 ) | |
| 7 | 6 | a1i | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐵 ≠ 𝐴 ↔ ¬ 𝐴 = 𝐵 ) ) |
| 8 | 5 7 | anbi12d | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( 𝐴 ≤ 𝐵 ∧ 𝐵 ≠ 𝐴 ) ↔ ( ¬ 𝐵 < 𝐴 ∧ ¬ 𝐴 = 𝐵 ) ) ) |
| 9 | 4 8 | bitr4d | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 < 𝐵 ↔ ( 𝐴 ≤ 𝐵 ∧ 𝐵 ≠ 𝐴 ) ) ) |