This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternative definition of 'less than or equal to' in terms of 'less than'. (Contributed by Mario Carneiro, 6-Nov-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfle2 | ⊢ ≤ = ( < ∪ ( I ↾ ℝ* ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lerel | ⊢ Rel ≤ | |
| 2 | ltrelxr | ⊢ < ⊆ ( ℝ* × ℝ* ) | |
| 3 | idssxp | ⊢ ( I ↾ ℝ* ) ⊆ ( ℝ* × ℝ* ) | |
| 4 | 2 3 | unssi | ⊢ ( < ∪ ( I ↾ ℝ* ) ) ⊆ ( ℝ* × ℝ* ) |
| 5 | relxp | ⊢ Rel ( ℝ* × ℝ* ) | |
| 6 | relss | ⊢ ( ( < ∪ ( I ↾ ℝ* ) ) ⊆ ( ℝ* × ℝ* ) → ( Rel ( ℝ* × ℝ* ) → Rel ( < ∪ ( I ↾ ℝ* ) ) ) ) | |
| 7 | 4 5 6 | mp2 | ⊢ Rel ( < ∪ ( I ↾ ℝ* ) ) |
| 8 | lerelxr | ⊢ ≤ ⊆ ( ℝ* × ℝ* ) | |
| 9 | 8 | brel | ⊢ ( 𝑥 ≤ 𝑦 → ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ) |
| 10 | 4 | brel | ⊢ ( 𝑥 ( < ∪ ( I ↾ ℝ* ) ) 𝑦 → ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ) |
| 11 | xrleloe | ⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → ( 𝑥 ≤ 𝑦 ↔ ( 𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ) ) ) | |
| 12 | resieq | ⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → ( 𝑥 ( I ↾ ℝ* ) 𝑦 ↔ 𝑥 = 𝑦 ) ) | |
| 13 | 12 | orbi2d | ⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → ( ( 𝑥 < 𝑦 ∨ 𝑥 ( I ↾ ℝ* ) 𝑦 ) ↔ ( 𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ) ) ) |
| 14 | 11 13 | bitr4d | ⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → ( 𝑥 ≤ 𝑦 ↔ ( 𝑥 < 𝑦 ∨ 𝑥 ( I ↾ ℝ* ) 𝑦 ) ) ) |
| 15 | brun | ⊢ ( 𝑥 ( < ∪ ( I ↾ ℝ* ) ) 𝑦 ↔ ( 𝑥 < 𝑦 ∨ 𝑥 ( I ↾ ℝ* ) 𝑦 ) ) | |
| 16 | 14 15 | bitr4di | ⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → ( 𝑥 ≤ 𝑦 ↔ 𝑥 ( < ∪ ( I ↾ ℝ* ) ) 𝑦 ) ) |
| 17 | 9 10 16 | pm5.21nii | ⊢ ( 𝑥 ≤ 𝑦 ↔ 𝑥 ( < ∪ ( I ↾ ℝ* ) ) 𝑦 ) |
| 18 | 1 7 17 | eqbrriv | ⊢ ≤ = ( < ∪ ( I ↾ ℝ* ) ) |