This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: 'Less than' expressed in terms of 'less than or equal to'. (Contributed by Mario Carneiro, 6-Nov-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xrltlen | |- ( ( A e. RR* /\ B e. RR* ) -> ( A < B <-> ( A <_ B /\ B =/= A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrlttri | |- ( ( A e. RR* /\ B e. RR* ) -> ( A < B <-> -. ( A = B \/ B < A ) ) ) |
|
| 2 | ioran | |- ( -. ( A = B \/ B < A ) <-> ( -. A = B /\ -. B < A ) ) |
|
| 3 | 2 | biancomi | |- ( -. ( A = B \/ B < A ) <-> ( -. B < A /\ -. A = B ) ) |
| 4 | 1 3 | bitrdi | |- ( ( A e. RR* /\ B e. RR* ) -> ( A < B <-> ( -. B < A /\ -. A = B ) ) ) |
| 5 | xrlenlt | |- ( ( A e. RR* /\ B e. RR* ) -> ( A <_ B <-> -. B < A ) ) |
|
| 6 | nesym | |- ( B =/= A <-> -. A = B ) |
|
| 7 | 6 | a1i | |- ( ( A e. RR* /\ B e. RR* ) -> ( B =/= A <-> -. A = B ) ) |
| 8 | 5 7 | anbi12d | |- ( ( A e. RR* /\ B e. RR* ) -> ( ( A <_ B /\ B =/= A ) <-> ( -. B < A /\ -. A = B ) ) ) |
| 9 | 4 8 | bitr4d | |- ( ( A e. RR* /\ B e. RR* ) -> ( A < B <-> ( A <_ B /\ B =/= A ) ) ) |