This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The components of a nonempty finite Cartesian product are finite. (Contributed by Paul Chapman, 11-Apr-2009) (Proof shortened by Mario Carneiro, 29-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xpfir | ⊢ ( ( ( 𝐴 × 𝐵 ) ∈ Fin ∧ ( 𝐴 × 𝐵 ) ≠ ∅ ) → ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpexr2 | ⊢ ( ( ( 𝐴 × 𝐵 ) ∈ Fin ∧ ( 𝐴 × 𝐵 ) ≠ ∅ ) → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) | |
| 2 | 1 | simpld | ⊢ ( ( ( 𝐴 × 𝐵 ) ∈ Fin ∧ ( 𝐴 × 𝐵 ) ≠ ∅ ) → 𝐴 ∈ V ) |
| 3 | 1 | simprd | ⊢ ( ( ( 𝐴 × 𝐵 ) ∈ Fin ∧ ( 𝐴 × 𝐵 ) ≠ ∅ ) → 𝐵 ∈ V ) |
| 4 | simpr | ⊢ ( ( ( 𝐴 × 𝐵 ) ∈ Fin ∧ ( 𝐴 × 𝐵 ) ≠ ∅ ) → ( 𝐴 × 𝐵 ) ≠ ∅ ) | |
| 5 | xpnz | ⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ↔ ( 𝐴 × 𝐵 ) ≠ ∅ ) | |
| 6 | 4 5 | sylibr | ⊢ ( ( ( 𝐴 × 𝐵 ) ∈ Fin ∧ ( 𝐴 × 𝐵 ) ≠ ∅ ) → ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ) |
| 7 | 6 | simprd | ⊢ ( ( ( 𝐴 × 𝐵 ) ∈ Fin ∧ ( 𝐴 × 𝐵 ) ≠ ∅ ) → 𝐵 ≠ ∅ ) |
| 8 | xpdom3 | ⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐵 ≠ ∅ ) → 𝐴 ≼ ( 𝐴 × 𝐵 ) ) | |
| 9 | 2 3 7 8 | syl3anc | ⊢ ( ( ( 𝐴 × 𝐵 ) ∈ Fin ∧ ( 𝐴 × 𝐵 ) ≠ ∅ ) → 𝐴 ≼ ( 𝐴 × 𝐵 ) ) |
| 10 | domfi | ⊢ ( ( ( 𝐴 × 𝐵 ) ∈ Fin ∧ 𝐴 ≼ ( 𝐴 × 𝐵 ) ) → 𝐴 ∈ Fin ) | |
| 11 | 9 10 | syldan | ⊢ ( ( ( 𝐴 × 𝐵 ) ∈ Fin ∧ ( 𝐴 × 𝐵 ) ≠ ∅ ) → 𝐴 ∈ Fin ) |
| 12 | 6 | simpld | ⊢ ( ( ( 𝐴 × 𝐵 ) ∈ Fin ∧ ( 𝐴 × 𝐵 ) ≠ ∅ ) → 𝐴 ≠ ∅ ) |
| 13 | xpdom3 | ⊢ ( ( 𝐵 ∈ V ∧ 𝐴 ∈ V ∧ 𝐴 ≠ ∅ ) → 𝐵 ≼ ( 𝐵 × 𝐴 ) ) | |
| 14 | 3 2 12 13 | syl3anc | ⊢ ( ( ( 𝐴 × 𝐵 ) ∈ Fin ∧ ( 𝐴 × 𝐵 ) ≠ ∅ ) → 𝐵 ≼ ( 𝐵 × 𝐴 ) ) |
| 15 | xpcomeng | ⊢ ( ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) → ( 𝐵 × 𝐴 ) ≈ ( 𝐴 × 𝐵 ) ) | |
| 16 | 3 2 15 | syl2anc | ⊢ ( ( ( 𝐴 × 𝐵 ) ∈ Fin ∧ ( 𝐴 × 𝐵 ) ≠ ∅ ) → ( 𝐵 × 𝐴 ) ≈ ( 𝐴 × 𝐵 ) ) |
| 17 | domentr | ⊢ ( ( 𝐵 ≼ ( 𝐵 × 𝐴 ) ∧ ( 𝐵 × 𝐴 ) ≈ ( 𝐴 × 𝐵 ) ) → 𝐵 ≼ ( 𝐴 × 𝐵 ) ) | |
| 18 | 14 16 17 | syl2anc | ⊢ ( ( ( 𝐴 × 𝐵 ) ∈ Fin ∧ ( 𝐴 × 𝐵 ) ≠ ∅ ) → 𝐵 ≼ ( 𝐴 × 𝐵 ) ) |
| 19 | domfi | ⊢ ( ( ( 𝐴 × 𝐵 ) ∈ Fin ∧ 𝐵 ≼ ( 𝐴 × 𝐵 ) ) → 𝐵 ∈ Fin ) | |
| 20 | 18 19 | syldan | ⊢ ( ( ( 𝐴 × 𝐵 ) ∈ Fin ∧ ( 𝐴 × 𝐵 ) ≠ ∅ ) → 𝐵 ∈ Fin ) |
| 21 | 11 20 | jca | ⊢ ( ( ( 𝐴 × 𝐵 ) ∈ Fin ∧ ( 𝐴 × 𝐵 ) ≠ ∅ ) → ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) ) |