This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The components of a nonempty finite Cartesian product are finite. (Contributed by Paul Chapman, 11-Apr-2009) (Proof shortened by Mario Carneiro, 29-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xpfir | |- ( ( ( A X. B ) e. Fin /\ ( A X. B ) =/= (/) ) -> ( A e. Fin /\ B e. Fin ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpexr2 | |- ( ( ( A X. B ) e. Fin /\ ( A X. B ) =/= (/) ) -> ( A e. _V /\ B e. _V ) ) |
|
| 2 | 1 | simpld | |- ( ( ( A X. B ) e. Fin /\ ( A X. B ) =/= (/) ) -> A e. _V ) |
| 3 | 1 | simprd | |- ( ( ( A X. B ) e. Fin /\ ( A X. B ) =/= (/) ) -> B e. _V ) |
| 4 | simpr | |- ( ( ( A X. B ) e. Fin /\ ( A X. B ) =/= (/) ) -> ( A X. B ) =/= (/) ) |
|
| 5 | xpnz | |- ( ( A =/= (/) /\ B =/= (/) ) <-> ( A X. B ) =/= (/) ) |
|
| 6 | 4 5 | sylibr | |- ( ( ( A X. B ) e. Fin /\ ( A X. B ) =/= (/) ) -> ( A =/= (/) /\ B =/= (/) ) ) |
| 7 | 6 | simprd | |- ( ( ( A X. B ) e. Fin /\ ( A X. B ) =/= (/) ) -> B =/= (/) ) |
| 8 | xpdom3 | |- ( ( A e. _V /\ B e. _V /\ B =/= (/) ) -> A ~<_ ( A X. B ) ) |
|
| 9 | 2 3 7 8 | syl3anc | |- ( ( ( A X. B ) e. Fin /\ ( A X. B ) =/= (/) ) -> A ~<_ ( A X. B ) ) |
| 10 | domfi | |- ( ( ( A X. B ) e. Fin /\ A ~<_ ( A X. B ) ) -> A e. Fin ) |
|
| 11 | 9 10 | syldan | |- ( ( ( A X. B ) e. Fin /\ ( A X. B ) =/= (/) ) -> A e. Fin ) |
| 12 | 6 | simpld | |- ( ( ( A X. B ) e. Fin /\ ( A X. B ) =/= (/) ) -> A =/= (/) ) |
| 13 | xpdom3 | |- ( ( B e. _V /\ A e. _V /\ A =/= (/) ) -> B ~<_ ( B X. A ) ) |
|
| 14 | 3 2 12 13 | syl3anc | |- ( ( ( A X. B ) e. Fin /\ ( A X. B ) =/= (/) ) -> B ~<_ ( B X. A ) ) |
| 15 | xpcomeng | |- ( ( B e. _V /\ A e. _V ) -> ( B X. A ) ~~ ( A X. B ) ) |
|
| 16 | 3 2 15 | syl2anc | |- ( ( ( A X. B ) e. Fin /\ ( A X. B ) =/= (/) ) -> ( B X. A ) ~~ ( A X. B ) ) |
| 17 | domentr | |- ( ( B ~<_ ( B X. A ) /\ ( B X. A ) ~~ ( A X. B ) ) -> B ~<_ ( A X. B ) ) |
|
| 18 | 14 16 17 | syl2anc | |- ( ( ( A X. B ) e. Fin /\ ( A X. B ) =/= (/) ) -> B ~<_ ( A X. B ) ) |
| 19 | domfi | |- ( ( ( A X. B ) e. Fin /\ B ~<_ ( A X. B ) ) -> B e. Fin ) |
|
| 20 | 18 19 | syldan | |- ( ( ( A X. B ) e. Fin /\ ( A X. B ) =/= (/) ) -> B e. Fin ) |
| 21 | 11 20 | jca | |- ( ( ( A X. B ) e. Fin /\ ( A X. B ) =/= (/) ) -> ( A e. Fin /\ B e. Fin ) ) |