This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The extended real multiplication operation is closed in extended reals. (Contributed by Mario Carneiro, 21-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xmulf | |- *e : ( RR* X. RR* ) --> RR* |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0xr | |- 0 e. RR* |
|
| 2 | 1 | a1i | |- ( ( ( x e. RR* /\ y e. RR* ) /\ ( x = 0 \/ y = 0 ) ) -> 0 e. RR* ) |
| 3 | pnfxr | |- +oo e. RR* |
|
| 4 | 3 | a1i | |- ( ( ( ( x e. RR* /\ y e. RR* ) /\ -. ( x = 0 \/ y = 0 ) ) /\ ( ( ( 0 < y /\ x = +oo ) \/ ( y < 0 /\ x = -oo ) ) \/ ( ( 0 < x /\ y = +oo ) \/ ( x < 0 /\ y = -oo ) ) ) ) -> +oo e. RR* ) |
| 5 | mnfxr | |- -oo e. RR* |
|
| 6 | 5 | a1i | |- ( ( ( ( ( x e. RR* /\ y e. RR* ) /\ -. ( x = 0 \/ y = 0 ) ) /\ -. ( ( ( 0 < y /\ x = +oo ) \/ ( y < 0 /\ x = -oo ) ) \/ ( ( 0 < x /\ y = +oo ) \/ ( x < 0 /\ y = -oo ) ) ) ) /\ ( ( ( 0 < y /\ x = -oo ) \/ ( y < 0 /\ x = +oo ) ) \/ ( ( 0 < x /\ y = -oo ) \/ ( x < 0 /\ y = +oo ) ) ) ) -> -oo e. RR* ) |
| 7 | xmullem | |- ( ( ( ( ( x e. RR* /\ y e. RR* ) /\ -. ( x = 0 \/ y = 0 ) ) /\ -. ( ( ( 0 < y /\ x = +oo ) \/ ( y < 0 /\ x = -oo ) ) \/ ( ( 0 < x /\ y = +oo ) \/ ( x < 0 /\ y = -oo ) ) ) ) /\ -. ( ( ( 0 < y /\ x = -oo ) \/ ( y < 0 /\ x = +oo ) ) \/ ( ( 0 < x /\ y = -oo ) \/ ( x < 0 /\ y = +oo ) ) ) ) -> x e. RR ) |
|
| 8 | ancom | |- ( ( x e. RR* /\ y e. RR* ) <-> ( y e. RR* /\ x e. RR* ) ) |
|
| 9 | orcom | |- ( ( x = 0 \/ y = 0 ) <-> ( y = 0 \/ x = 0 ) ) |
|
| 10 | 9 | notbii | |- ( -. ( x = 0 \/ y = 0 ) <-> -. ( y = 0 \/ x = 0 ) ) |
| 11 | 8 10 | anbi12i | |- ( ( ( x e. RR* /\ y e. RR* ) /\ -. ( x = 0 \/ y = 0 ) ) <-> ( ( y e. RR* /\ x e. RR* ) /\ -. ( y = 0 \/ x = 0 ) ) ) |
| 12 | orcom | |- ( ( ( ( 0 < y /\ x = +oo ) \/ ( y < 0 /\ x = -oo ) ) \/ ( ( 0 < x /\ y = +oo ) \/ ( x < 0 /\ y = -oo ) ) ) <-> ( ( ( 0 < x /\ y = +oo ) \/ ( x < 0 /\ y = -oo ) ) \/ ( ( 0 < y /\ x = +oo ) \/ ( y < 0 /\ x = -oo ) ) ) ) |
|
| 13 | 12 | notbii | |- ( -. ( ( ( 0 < y /\ x = +oo ) \/ ( y < 0 /\ x = -oo ) ) \/ ( ( 0 < x /\ y = +oo ) \/ ( x < 0 /\ y = -oo ) ) ) <-> -. ( ( ( 0 < x /\ y = +oo ) \/ ( x < 0 /\ y = -oo ) ) \/ ( ( 0 < y /\ x = +oo ) \/ ( y < 0 /\ x = -oo ) ) ) ) |
| 14 | 11 13 | anbi12i | |- ( ( ( ( x e. RR* /\ y e. RR* ) /\ -. ( x = 0 \/ y = 0 ) ) /\ -. ( ( ( 0 < y /\ x = +oo ) \/ ( y < 0 /\ x = -oo ) ) \/ ( ( 0 < x /\ y = +oo ) \/ ( x < 0 /\ y = -oo ) ) ) ) <-> ( ( ( y e. RR* /\ x e. RR* ) /\ -. ( y = 0 \/ x = 0 ) ) /\ -. ( ( ( 0 < x /\ y = +oo ) \/ ( x < 0 /\ y = -oo ) ) \/ ( ( 0 < y /\ x = +oo ) \/ ( y < 0 /\ x = -oo ) ) ) ) ) |
| 15 | orcom | |- ( ( ( ( 0 < y /\ x = -oo ) \/ ( y < 0 /\ x = +oo ) ) \/ ( ( 0 < x /\ y = -oo ) \/ ( x < 0 /\ y = +oo ) ) ) <-> ( ( ( 0 < x /\ y = -oo ) \/ ( x < 0 /\ y = +oo ) ) \/ ( ( 0 < y /\ x = -oo ) \/ ( y < 0 /\ x = +oo ) ) ) ) |
|
| 16 | 15 | notbii | |- ( -. ( ( ( 0 < y /\ x = -oo ) \/ ( y < 0 /\ x = +oo ) ) \/ ( ( 0 < x /\ y = -oo ) \/ ( x < 0 /\ y = +oo ) ) ) <-> -. ( ( ( 0 < x /\ y = -oo ) \/ ( x < 0 /\ y = +oo ) ) \/ ( ( 0 < y /\ x = -oo ) \/ ( y < 0 /\ x = +oo ) ) ) ) |
| 17 | xmullem | |- ( ( ( ( ( y e. RR* /\ x e. RR* ) /\ -. ( y = 0 \/ x = 0 ) ) /\ -. ( ( ( 0 < x /\ y = +oo ) \/ ( x < 0 /\ y = -oo ) ) \/ ( ( 0 < y /\ x = +oo ) \/ ( y < 0 /\ x = -oo ) ) ) ) /\ -. ( ( ( 0 < x /\ y = -oo ) \/ ( x < 0 /\ y = +oo ) ) \/ ( ( 0 < y /\ x = -oo ) \/ ( y < 0 /\ x = +oo ) ) ) ) -> y e. RR ) |
|
| 18 | 14 16 17 | syl2anb | |- ( ( ( ( ( x e. RR* /\ y e. RR* ) /\ -. ( x = 0 \/ y = 0 ) ) /\ -. ( ( ( 0 < y /\ x = +oo ) \/ ( y < 0 /\ x = -oo ) ) \/ ( ( 0 < x /\ y = +oo ) \/ ( x < 0 /\ y = -oo ) ) ) ) /\ -. ( ( ( 0 < y /\ x = -oo ) \/ ( y < 0 /\ x = +oo ) ) \/ ( ( 0 < x /\ y = -oo ) \/ ( x < 0 /\ y = +oo ) ) ) ) -> y e. RR ) |
| 19 | 7 18 | remulcld | |- ( ( ( ( ( x e. RR* /\ y e. RR* ) /\ -. ( x = 0 \/ y = 0 ) ) /\ -. ( ( ( 0 < y /\ x = +oo ) \/ ( y < 0 /\ x = -oo ) ) \/ ( ( 0 < x /\ y = +oo ) \/ ( x < 0 /\ y = -oo ) ) ) ) /\ -. ( ( ( 0 < y /\ x = -oo ) \/ ( y < 0 /\ x = +oo ) ) \/ ( ( 0 < x /\ y = -oo ) \/ ( x < 0 /\ y = +oo ) ) ) ) -> ( x x. y ) e. RR ) |
| 20 | 19 | rexrd | |- ( ( ( ( ( x e. RR* /\ y e. RR* ) /\ -. ( x = 0 \/ y = 0 ) ) /\ -. ( ( ( 0 < y /\ x = +oo ) \/ ( y < 0 /\ x = -oo ) ) \/ ( ( 0 < x /\ y = +oo ) \/ ( x < 0 /\ y = -oo ) ) ) ) /\ -. ( ( ( 0 < y /\ x = -oo ) \/ ( y < 0 /\ x = +oo ) ) \/ ( ( 0 < x /\ y = -oo ) \/ ( x < 0 /\ y = +oo ) ) ) ) -> ( x x. y ) e. RR* ) |
| 21 | 6 20 | ifclda | |- ( ( ( ( x e. RR* /\ y e. RR* ) /\ -. ( x = 0 \/ y = 0 ) ) /\ -. ( ( ( 0 < y /\ x = +oo ) \/ ( y < 0 /\ x = -oo ) ) \/ ( ( 0 < x /\ y = +oo ) \/ ( x < 0 /\ y = -oo ) ) ) ) -> if ( ( ( ( 0 < y /\ x = -oo ) \/ ( y < 0 /\ x = +oo ) ) \/ ( ( 0 < x /\ y = -oo ) \/ ( x < 0 /\ y = +oo ) ) ) , -oo , ( x x. y ) ) e. RR* ) |
| 22 | 4 21 | ifclda | |- ( ( ( x e. RR* /\ y e. RR* ) /\ -. ( x = 0 \/ y = 0 ) ) -> if ( ( ( ( 0 < y /\ x = +oo ) \/ ( y < 0 /\ x = -oo ) ) \/ ( ( 0 < x /\ y = +oo ) \/ ( x < 0 /\ y = -oo ) ) ) , +oo , if ( ( ( ( 0 < y /\ x = -oo ) \/ ( y < 0 /\ x = +oo ) ) \/ ( ( 0 < x /\ y = -oo ) \/ ( x < 0 /\ y = +oo ) ) ) , -oo , ( x x. y ) ) ) e. RR* ) |
| 23 | 2 22 | ifclda | |- ( ( x e. RR* /\ y e. RR* ) -> if ( ( x = 0 \/ y = 0 ) , 0 , if ( ( ( ( 0 < y /\ x = +oo ) \/ ( y < 0 /\ x = -oo ) ) \/ ( ( 0 < x /\ y = +oo ) \/ ( x < 0 /\ y = -oo ) ) ) , +oo , if ( ( ( ( 0 < y /\ x = -oo ) \/ ( y < 0 /\ x = +oo ) ) \/ ( ( 0 < x /\ y = -oo ) \/ ( x < 0 /\ y = +oo ) ) ) , -oo , ( x x. y ) ) ) ) e. RR* ) |
| 24 | 23 | rgen2 | |- A. x e. RR* A. y e. RR* if ( ( x = 0 \/ y = 0 ) , 0 , if ( ( ( ( 0 < y /\ x = +oo ) \/ ( y < 0 /\ x = -oo ) ) \/ ( ( 0 < x /\ y = +oo ) \/ ( x < 0 /\ y = -oo ) ) ) , +oo , if ( ( ( ( 0 < y /\ x = -oo ) \/ ( y < 0 /\ x = +oo ) ) \/ ( ( 0 < x /\ y = -oo ) \/ ( x < 0 /\ y = +oo ) ) ) , -oo , ( x x. y ) ) ) ) e. RR* |
| 25 | df-xmul | |- *e = ( x e. RR* , y e. RR* |-> if ( ( x = 0 \/ y = 0 ) , 0 , if ( ( ( ( 0 < y /\ x = +oo ) \/ ( y < 0 /\ x = -oo ) ) \/ ( ( 0 < x /\ y = +oo ) \/ ( x < 0 /\ y = -oo ) ) ) , +oo , if ( ( ( ( 0 < y /\ x = -oo ) \/ ( y < 0 /\ x = +oo ) ) \/ ( ( 0 < x /\ y = -oo ) \/ ( x < 0 /\ y = +oo ) ) ) , -oo , ( x x. y ) ) ) ) ) |
|
| 26 | 25 | fmpo | |- ( A. x e. RR* A. y e. RR* if ( ( x = 0 \/ y = 0 ) , 0 , if ( ( ( ( 0 < y /\ x = +oo ) \/ ( y < 0 /\ x = -oo ) ) \/ ( ( 0 < x /\ y = +oo ) \/ ( x < 0 /\ y = -oo ) ) ) , +oo , if ( ( ( ( 0 < y /\ x = -oo ) \/ ( y < 0 /\ x = +oo ) ) \/ ( ( 0 < x /\ y = -oo ) \/ ( x < 0 /\ y = +oo ) ) ) , -oo , ( x x. y ) ) ) ) e. RR* <-> *e : ( RR* X. RR* ) --> RR* ) |
| 27 | 24 26 | mpbi | |- *e : ( RR* X. RR* ) --> RR* |