This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Extended real version of leneg . (Contributed by Mario Carneiro, 20-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xleneg | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 ≤ 𝐵 ↔ -𝑒 𝐵 ≤ -𝑒 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xltneg | ⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ) → ( 𝐵 < 𝐴 ↔ -𝑒 𝐴 < -𝑒 𝐵 ) ) | |
| 2 | 1 | ancoms | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐵 < 𝐴 ↔ -𝑒 𝐴 < -𝑒 𝐵 ) ) |
| 3 | 2 | notbid | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ¬ 𝐵 < 𝐴 ↔ ¬ -𝑒 𝐴 < -𝑒 𝐵 ) ) |
| 4 | xrlenlt | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴 ) ) | |
| 5 | xnegcl | ⊢ ( 𝐵 ∈ ℝ* → -𝑒 𝐵 ∈ ℝ* ) | |
| 6 | xnegcl | ⊢ ( 𝐴 ∈ ℝ* → -𝑒 𝐴 ∈ ℝ* ) | |
| 7 | xrlenlt | ⊢ ( ( -𝑒 𝐵 ∈ ℝ* ∧ -𝑒 𝐴 ∈ ℝ* ) → ( -𝑒 𝐵 ≤ -𝑒 𝐴 ↔ ¬ -𝑒 𝐴 < -𝑒 𝐵 ) ) | |
| 8 | 5 6 7 | syl2anr | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( -𝑒 𝐵 ≤ -𝑒 𝐴 ↔ ¬ -𝑒 𝐴 < -𝑒 𝐵 ) ) |
| 9 | 3 4 8 | 3bitr4d | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 ≤ 𝐵 ↔ -𝑒 𝐵 ≤ -𝑒 𝐴 ) ) |