This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Extended real version of leneg . (Contributed by Mario Carneiro, 20-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xleneg | |- ( ( A e. RR* /\ B e. RR* ) -> ( A <_ B <-> -e B <_ -e A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xltneg | |- ( ( B e. RR* /\ A e. RR* ) -> ( B < A <-> -e A < -e B ) ) |
|
| 2 | 1 | ancoms | |- ( ( A e. RR* /\ B e. RR* ) -> ( B < A <-> -e A < -e B ) ) |
| 3 | 2 | notbid | |- ( ( A e. RR* /\ B e. RR* ) -> ( -. B < A <-> -. -e A < -e B ) ) |
| 4 | xrlenlt | |- ( ( A e. RR* /\ B e. RR* ) -> ( A <_ B <-> -. B < A ) ) |
|
| 5 | xnegcl | |- ( B e. RR* -> -e B e. RR* ) |
|
| 6 | xnegcl | |- ( A e. RR* -> -e A e. RR* ) |
|
| 7 | xrlenlt | |- ( ( -e B e. RR* /\ -e A e. RR* ) -> ( -e B <_ -e A <-> -. -e A < -e B ) ) |
|
| 8 | 5 6 7 | syl2anr | |- ( ( A e. RR* /\ B e. RR* ) -> ( -e B <_ -e A <-> -. -e A < -e B ) ) |
| 9 | 3 4 8 | 3bitr4d | |- ( ( A e. RR* /\ B e. RR* ) -> ( A <_ B <-> -e B <_ -e A ) ) |