This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Generalize lebnum to extended metrics. (Contributed by Mario Carneiro, 5-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | xlebnum.j | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| xlebnum.d | ⊢ ( 𝜑 → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) | ||
| xlebnum.c | ⊢ ( 𝜑 → 𝐽 ∈ Comp ) | ||
| xlebnum.s | ⊢ ( 𝜑 → 𝑈 ⊆ 𝐽 ) | ||
| xlebnum.u | ⊢ ( 𝜑 → 𝑋 = ∪ 𝑈 ) | ||
| Assertion | xlebnum | ⊢ ( 𝜑 → ∃ 𝑑 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∃ 𝑢 ∈ 𝑈 ( 𝑥 ( ball ‘ 𝐷 ) 𝑑 ) ⊆ 𝑢 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xlebnum.j | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| 2 | xlebnum.d | ⊢ ( 𝜑 → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) | |
| 3 | xlebnum.c | ⊢ ( 𝜑 → 𝐽 ∈ Comp ) | |
| 4 | xlebnum.s | ⊢ ( 𝜑 → 𝑈 ⊆ 𝐽 ) | |
| 5 | xlebnum.u | ⊢ ( 𝜑 → 𝑋 = ∪ 𝑈 ) | |
| 6 | eqid | ⊢ ( MetOpen ‘ ( 𝑦 ∈ 𝑋 , 𝑧 ∈ 𝑋 ↦ if ( ( 𝑦 𝐷 𝑧 ) ≤ 1 , ( 𝑦 𝐷 𝑧 ) , 1 ) ) ) = ( MetOpen ‘ ( 𝑦 ∈ 𝑋 , 𝑧 ∈ 𝑋 ↦ if ( ( 𝑦 𝐷 𝑧 ) ≤ 1 , ( 𝑦 𝐷 𝑧 ) , 1 ) ) ) | |
| 7 | 1rp | ⊢ 1 ∈ ℝ+ | |
| 8 | eqid | ⊢ ( 𝑦 ∈ 𝑋 , 𝑧 ∈ 𝑋 ↦ if ( ( 𝑦 𝐷 𝑧 ) ≤ 1 , ( 𝑦 𝐷 𝑧 ) , 1 ) ) = ( 𝑦 ∈ 𝑋 , 𝑧 ∈ 𝑋 ↦ if ( ( 𝑦 𝐷 𝑧 ) ≤ 1 , ( 𝑦 𝐷 𝑧 ) , 1 ) ) | |
| 9 | 8 | stdbdmet | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 1 ∈ ℝ+ ) → ( 𝑦 ∈ 𝑋 , 𝑧 ∈ 𝑋 ↦ if ( ( 𝑦 𝐷 𝑧 ) ≤ 1 , ( 𝑦 𝐷 𝑧 ) , 1 ) ) ∈ ( Met ‘ 𝑋 ) ) |
| 10 | 2 7 9 | sylancl | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝑋 , 𝑧 ∈ 𝑋 ↦ if ( ( 𝑦 𝐷 𝑧 ) ≤ 1 , ( 𝑦 𝐷 𝑧 ) , 1 ) ) ∈ ( Met ‘ 𝑋 ) ) |
| 11 | rpxr | ⊢ ( 1 ∈ ℝ+ → 1 ∈ ℝ* ) | |
| 12 | 7 11 | mp1i | ⊢ ( 𝜑 → 1 ∈ ℝ* ) |
| 13 | 0lt1 | ⊢ 0 < 1 | |
| 14 | 13 | a1i | ⊢ ( 𝜑 → 0 < 1 ) |
| 15 | 8 1 | stdbdmopn | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 1 ∈ ℝ* ∧ 0 < 1 ) → 𝐽 = ( MetOpen ‘ ( 𝑦 ∈ 𝑋 , 𝑧 ∈ 𝑋 ↦ if ( ( 𝑦 𝐷 𝑧 ) ≤ 1 , ( 𝑦 𝐷 𝑧 ) , 1 ) ) ) ) |
| 16 | 2 12 14 15 | syl3anc | ⊢ ( 𝜑 → 𝐽 = ( MetOpen ‘ ( 𝑦 ∈ 𝑋 , 𝑧 ∈ 𝑋 ↦ if ( ( 𝑦 𝐷 𝑧 ) ≤ 1 , ( 𝑦 𝐷 𝑧 ) , 1 ) ) ) ) |
| 17 | 16 3 | eqeltrrd | ⊢ ( 𝜑 → ( MetOpen ‘ ( 𝑦 ∈ 𝑋 , 𝑧 ∈ 𝑋 ↦ if ( ( 𝑦 𝐷 𝑧 ) ≤ 1 , ( 𝑦 𝐷 𝑧 ) , 1 ) ) ) ∈ Comp ) |
| 18 | 4 16 | sseqtrd | ⊢ ( 𝜑 → 𝑈 ⊆ ( MetOpen ‘ ( 𝑦 ∈ 𝑋 , 𝑧 ∈ 𝑋 ↦ if ( ( 𝑦 𝐷 𝑧 ) ≤ 1 , ( 𝑦 𝐷 𝑧 ) , 1 ) ) ) ) |
| 19 | 6 10 17 18 5 | lebnum | ⊢ ( 𝜑 → ∃ 𝑟 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∃ 𝑢 ∈ 𝑈 ( 𝑥 ( ball ‘ ( 𝑦 ∈ 𝑋 , 𝑧 ∈ 𝑋 ↦ if ( ( 𝑦 𝐷 𝑧 ) ≤ 1 , ( 𝑦 𝐷 𝑧 ) , 1 ) ) ) 𝑟 ) ⊆ 𝑢 ) |
| 20 | simpr | ⊢ ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) → 𝑟 ∈ ℝ+ ) | |
| 21 | ifcl | ⊢ ( ( 𝑟 ∈ ℝ+ ∧ 1 ∈ ℝ+ ) → if ( 𝑟 ≤ 1 , 𝑟 , 1 ) ∈ ℝ+ ) | |
| 22 | 20 7 21 | sylancl | ⊢ ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) → if ( 𝑟 ≤ 1 , 𝑟 , 1 ) ∈ ℝ+ ) |
| 23 | 2 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝑋 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 24 | 7 11 | mp1i | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝑋 ) → 1 ∈ ℝ* ) |
| 25 | 13 | a1i | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝑋 ) → 0 < 1 ) |
| 26 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ∈ 𝑋 ) | |
| 27 | 22 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝑋 ) → if ( 𝑟 ≤ 1 , 𝑟 , 1 ) ∈ ℝ+ ) |
| 28 | rpxr | ⊢ ( if ( 𝑟 ≤ 1 , 𝑟 , 1 ) ∈ ℝ+ → if ( 𝑟 ≤ 1 , 𝑟 , 1 ) ∈ ℝ* ) | |
| 29 | 27 28 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝑋 ) → if ( 𝑟 ≤ 1 , 𝑟 , 1 ) ∈ ℝ* ) |
| 30 | rpre | ⊢ ( 𝑟 ∈ ℝ+ → 𝑟 ∈ ℝ ) | |
| 31 | 30 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝑋 ) → 𝑟 ∈ ℝ ) |
| 32 | 1re | ⊢ 1 ∈ ℝ | |
| 33 | min2 | ⊢ ( ( 𝑟 ∈ ℝ ∧ 1 ∈ ℝ ) → if ( 𝑟 ≤ 1 , 𝑟 , 1 ) ≤ 1 ) | |
| 34 | 31 32 33 | sylancl | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝑋 ) → if ( 𝑟 ≤ 1 , 𝑟 , 1 ) ≤ 1 ) |
| 35 | 8 | stdbdbl | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 1 ∈ ℝ* ∧ 0 < 1 ) ∧ ( 𝑥 ∈ 𝑋 ∧ if ( 𝑟 ≤ 1 , 𝑟 , 1 ) ∈ ℝ* ∧ if ( 𝑟 ≤ 1 , 𝑟 , 1 ) ≤ 1 ) ) → ( 𝑥 ( ball ‘ ( 𝑦 ∈ 𝑋 , 𝑧 ∈ 𝑋 ↦ if ( ( 𝑦 𝐷 𝑧 ) ≤ 1 , ( 𝑦 𝐷 𝑧 ) , 1 ) ) ) if ( 𝑟 ≤ 1 , 𝑟 , 1 ) ) = ( 𝑥 ( ball ‘ 𝐷 ) if ( 𝑟 ≤ 1 , 𝑟 , 1 ) ) ) |
| 36 | 23 24 25 26 29 34 35 | syl33anc | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝑥 ( ball ‘ ( 𝑦 ∈ 𝑋 , 𝑧 ∈ 𝑋 ↦ if ( ( 𝑦 𝐷 𝑧 ) ≤ 1 , ( 𝑦 𝐷 𝑧 ) , 1 ) ) ) if ( 𝑟 ≤ 1 , 𝑟 , 1 ) ) = ( 𝑥 ( ball ‘ 𝐷 ) if ( 𝑟 ≤ 1 , 𝑟 , 1 ) ) ) |
| 37 | 10 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝑦 ∈ 𝑋 , 𝑧 ∈ 𝑋 ↦ if ( ( 𝑦 𝐷 𝑧 ) ≤ 1 , ( 𝑦 𝐷 𝑧 ) , 1 ) ) ∈ ( Met ‘ 𝑋 ) ) |
| 38 | metxmet | ⊢ ( ( 𝑦 ∈ 𝑋 , 𝑧 ∈ 𝑋 ↦ if ( ( 𝑦 𝐷 𝑧 ) ≤ 1 , ( 𝑦 𝐷 𝑧 ) , 1 ) ) ∈ ( Met ‘ 𝑋 ) → ( 𝑦 ∈ 𝑋 , 𝑧 ∈ 𝑋 ↦ if ( ( 𝑦 𝐷 𝑧 ) ≤ 1 , ( 𝑦 𝐷 𝑧 ) , 1 ) ) ∈ ( ∞Met ‘ 𝑋 ) ) | |
| 39 | 37 38 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝑦 ∈ 𝑋 , 𝑧 ∈ 𝑋 ↦ if ( ( 𝑦 𝐷 𝑧 ) ≤ 1 , ( 𝑦 𝐷 𝑧 ) , 1 ) ) ∈ ( ∞Met ‘ 𝑋 ) ) |
| 40 | rpxr | ⊢ ( 𝑟 ∈ ℝ+ → 𝑟 ∈ ℝ* ) | |
| 41 | 40 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝑋 ) → 𝑟 ∈ ℝ* ) |
| 42 | min1 | ⊢ ( ( 𝑟 ∈ ℝ ∧ 1 ∈ ℝ ) → if ( 𝑟 ≤ 1 , 𝑟 , 1 ) ≤ 𝑟 ) | |
| 43 | 31 32 42 | sylancl | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝑋 ) → if ( 𝑟 ≤ 1 , 𝑟 , 1 ) ≤ 𝑟 ) |
| 44 | ssbl | ⊢ ( ( ( ( 𝑦 ∈ 𝑋 , 𝑧 ∈ 𝑋 ↦ if ( ( 𝑦 𝐷 𝑧 ) ≤ 1 , ( 𝑦 𝐷 𝑧 ) , 1 ) ) ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( if ( 𝑟 ≤ 1 , 𝑟 , 1 ) ∈ ℝ* ∧ 𝑟 ∈ ℝ* ) ∧ if ( 𝑟 ≤ 1 , 𝑟 , 1 ) ≤ 𝑟 ) → ( 𝑥 ( ball ‘ ( 𝑦 ∈ 𝑋 , 𝑧 ∈ 𝑋 ↦ if ( ( 𝑦 𝐷 𝑧 ) ≤ 1 , ( 𝑦 𝐷 𝑧 ) , 1 ) ) ) if ( 𝑟 ≤ 1 , 𝑟 , 1 ) ) ⊆ ( 𝑥 ( ball ‘ ( 𝑦 ∈ 𝑋 , 𝑧 ∈ 𝑋 ↦ if ( ( 𝑦 𝐷 𝑧 ) ≤ 1 , ( 𝑦 𝐷 𝑧 ) , 1 ) ) ) 𝑟 ) ) | |
| 45 | 39 26 29 41 43 44 | syl221anc | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝑥 ( ball ‘ ( 𝑦 ∈ 𝑋 , 𝑧 ∈ 𝑋 ↦ if ( ( 𝑦 𝐷 𝑧 ) ≤ 1 , ( 𝑦 𝐷 𝑧 ) , 1 ) ) ) if ( 𝑟 ≤ 1 , 𝑟 , 1 ) ) ⊆ ( 𝑥 ( ball ‘ ( 𝑦 ∈ 𝑋 , 𝑧 ∈ 𝑋 ↦ if ( ( 𝑦 𝐷 𝑧 ) ≤ 1 , ( 𝑦 𝐷 𝑧 ) , 1 ) ) ) 𝑟 ) ) |
| 46 | 36 45 | eqsstrrd | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝑥 ( ball ‘ 𝐷 ) if ( 𝑟 ≤ 1 , 𝑟 , 1 ) ) ⊆ ( 𝑥 ( ball ‘ ( 𝑦 ∈ 𝑋 , 𝑧 ∈ 𝑋 ↦ if ( ( 𝑦 𝐷 𝑧 ) ≤ 1 , ( 𝑦 𝐷 𝑧 ) , 1 ) ) ) 𝑟 ) ) |
| 47 | sstr2 | ⊢ ( ( 𝑥 ( ball ‘ 𝐷 ) if ( 𝑟 ≤ 1 , 𝑟 , 1 ) ) ⊆ ( 𝑥 ( ball ‘ ( 𝑦 ∈ 𝑋 , 𝑧 ∈ 𝑋 ↦ if ( ( 𝑦 𝐷 𝑧 ) ≤ 1 , ( 𝑦 𝐷 𝑧 ) , 1 ) ) ) 𝑟 ) → ( ( 𝑥 ( ball ‘ ( 𝑦 ∈ 𝑋 , 𝑧 ∈ 𝑋 ↦ if ( ( 𝑦 𝐷 𝑧 ) ≤ 1 , ( 𝑦 𝐷 𝑧 ) , 1 ) ) ) 𝑟 ) ⊆ 𝑢 → ( 𝑥 ( ball ‘ 𝐷 ) if ( 𝑟 ≤ 1 , 𝑟 , 1 ) ) ⊆ 𝑢 ) ) | |
| 48 | 46 47 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑥 ( ball ‘ ( 𝑦 ∈ 𝑋 , 𝑧 ∈ 𝑋 ↦ if ( ( 𝑦 𝐷 𝑧 ) ≤ 1 , ( 𝑦 𝐷 𝑧 ) , 1 ) ) ) 𝑟 ) ⊆ 𝑢 → ( 𝑥 ( ball ‘ 𝐷 ) if ( 𝑟 ≤ 1 , 𝑟 , 1 ) ) ⊆ 𝑢 ) ) |
| 49 | 48 | reximdv | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝑋 ) → ( ∃ 𝑢 ∈ 𝑈 ( 𝑥 ( ball ‘ ( 𝑦 ∈ 𝑋 , 𝑧 ∈ 𝑋 ↦ if ( ( 𝑦 𝐷 𝑧 ) ≤ 1 , ( 𝑦 𝐷 𝑧 ) , 1 ) ) ) 𝑟 ) ⊆ 𝑢 → ∃ 𝑢 ∈ 𝑈 ( 𝑥 ( ball ‘ 𝐷 ) if ( 𝑟 ≤ 1 , 𝑟 , 1 ) ) ⊆ 𝑢 ) ) |
| 50 | 49 | ralimdva | ⊢ ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) → ( ∀ 𝑥 ∈ 𝑋 ∃ 𝑢 ∈ 𝑈 ( 𝑥 ( ball ‘ ( 𝑦 ∈ 𝑋 , 𝑧 ∈ 𝑋 ↦ if ( ( 𝑦 𝐷 𝑧 ) ≤ 1 , ( 𝑦 𝐷 𝑧 ) , 1 ) ) ) 𝑟 ) ⊆ 𝑢 → ∀ 𝑥 ∈ 𝑋 ∃ 𝑢 ∈ 𝑈 ( 𝑥 ( ball ‘ 𝐷 ) if ( 𝑟 ≤ 1 , 𝑟 , 1 ) ) ⊆ 𝑢 ) ) |
| 51 | oveq2 | ⊢ ( 𝑑 = if ( 𝑟 ≤ 1 , 𝑟 , 1 ) → ( 𝑥 ( ball ‘ 𝐷 ) 𝑑 ) = ( 𝑥 ( ball ‘ 𝐷 ) if ( 𝑟 ≤ 1 , 𝑟 , 1 ) ) ) | |
| 52 | 51 | sseq1d | ⊢ ( 𝑑 = if ( 𝑟 ≤ 1 , 𝑟 , 1 ) → ( ( 𝑥 ( ball ‘ 𝐷 ) 𝑑 ) ⊆ 𝑢 ↔ ( 𝑥 ( ball ‘ 𝐷 ) if ( 𝑟 ≤ 1 , 𝑟 , 1 ) ) ⊆ 𝑢 ) ) |
| 53 | 52 | rexbidv | ⊢ ( 𝑑 = if ( 𝑟 ≤ 1 , 𝑟 , 1 ) → ( ∃ 𝑢 ∈ 𝑈 ( 𝑥 ( ball ‘ 𝐷 ) 𝑑 ) ⊆ 𝑢 ↔ ∃ 𝑢 ∈ 𝑈 ( 𝑥 ( ball ‘ 𝐷 ) if ( 𝑟 ≤ 1 , 𝑟 , 1 ) ) ⊆ 𝑢 ) ) |
| 54 | 53 | ralbidv | ⊢ ( 𝑑 = if ( 𝑟 ≤ 1 , 𝑟 , 1 ) → ( ∀ 𝑥 ∈ 𝑋 ∃ 𝑢 ∈ 𝑈 ( 𝑥 ( ball ‘ 𝐷 ) 𝑑 ) ⊆ 𝑢 ↔ ∀ 𝑥 ∈ 𝑋 ∃ 𝑢 ∈ 𝑈 ( 𝑥 ( ball ‘ 𝐷 ) if ( 𝑟 ≤ 1 , 𝑟 , 1 ) ) ⊆ 𝑢 ) ) |
| 55 | 54 | rspcev | ⊢ ( ( if ( 𝑟 ≤ 1 , 𝑟 , 1 ) ∈ ℝ+ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑢 ∈ 𝑈 ( 𝑥 ( ball ‘ 𝐷 ) if ( 𝑟 ≤ 1 , 𝑟 , 1 ) ) ⊆ 𝑢 ) → ∃ 𝑑 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∃ 𝑢 ∈ 𝑈 ( 𝑥 ( ball ‘ 𝐷 ) 𝑑 ) ⊆ 𝑢 ) |
| 56 | 22 50 55 | syl6an | ⊢ ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) → ( ∀ 𝑥 ∈ 𝑋 ∃ 𝑢 ∈ 𝑈 ( 𝑥 ( ball ‘ ( 𝑦 ∈ 𝑋 , 𝑧 ∈ 𝑋 ↦ if ( ( 𝑦 𝐷 𝑧 ) ≤ 1 , ( 𝑦 𝐷 𝑧 ) , 1 ) ) ) 𝑟 ) ⊆ 𝑢 → ∃ 𝑑 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∃ 𝑢 ∈ 𝑈 ( 𝑥 ( ball ‘ 𝐷 ) 𝑑 ) ⊆ 𝑢 ) ) |
| 57 | 56 | rexlimdva | ⊢ ( 𝜑 → ( ∃ 𝑟 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∃ 𝑢 ∈ 𝑈 ( 𝑥 ( ball ‘ ( 𝑦 ∈ 𝑋 , 𝑧 ∈ 𝑋 ↦ if ( ( 𝑦 𝐷 𝑧 ) ≤ 1 , ( 𝑦 𝐷 𝑧 ) , 1 ) ) ) 𝑟 ) ⊆ 𝑢 → ∃ 𝑑 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∃ 𝑢 ∈ 𝑈 ( 𝑥 ( ball ‘ 𝐷 ) 𝑑 ) ⊆ 𝑢 ) ) |
| 58 | 19 57 | mpd | ⊢ ( 𝜑 → ∃ 𝑑 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∃ 𝑢 ∈ 𝑈 ( 𝑥 ( ball ‘ 𝐷 ) 𝑑 ) ⊆ 𝑢 ) |