This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The infinity ball in an extended metric is the set of all points that are a finite distance from the center. (Contributed by Mario Carneiro, 23-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xblpnf | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) → ( 𝐴 ∈ ( 𝑃 ( ball ‘ 𝐷 ) +∞ ) ↔ ( 𝐴 ∈ 𝑋 ∧ ( 𝑃 𝐷 𝐴 ) ∈ ℝ ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pnfxr | ⊢ +∞ ∈ ℝ* | |
| 2 | elbl | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ +∞ ∈ ℝ* ) → ( 𝐴 ∈ ( 𝑃 ( ball ‘ 𝐷 ) +∞ ) ↔ ( 𝐴 ∈ 𝑋 ∧ ( 𝑃 𝐷 𝐴 ) < +∞ ) ) ) | |
| 3 | 1 2 | mp3an3 | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) → ( 𝐴 ∈ ( 𝑃 ( ball ‘ 𝐷 ) +∞ ) ↔ ( 𝐴 ∈ 𝑋 ∧ ( 𝑃 𝐷 𝐴 ) < +∞ ) ) ) |
| 4 | xmetcl | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( 𝑃 𝐷 𝐴 ) ∈ ℝ* ) | |
| 5 | xmetge0 | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → 0 ≤ ( 𝑃 𝐷 𝐴 ) ) | |
| 6 | ge0nemnf | ⊢ ( ( ( 𝑃 𝐷 𝐴 ) ∈ ℝ* ∧ 0 ≤ ( 𝑃 𝐷 𝐴 ) ) → ( 𝑃 𝐷 𝐴 ) ≠ -∞ ) | |
| 7 | 4 5 6 | syl2anc | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( 𝑃 𝐷 𝐴 ) ≠ -∞ ) |
| 8 | ngtmnft | ⊢ ( ( 𝑃 𝐷 𝐴 ) ∈ ℝ* → ( ( 𝑃 𝐷 𝐴 ) = -∞ ↔ ¬ -∞ < ( 𝑃 𝐷 𝐴 ) ) ) | |
| 9 | 4 8 | syl | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑃 𝐷 𝐴 ) = -∞ ↔ ¬ -∞ < ( 𝑃 𝐷 𝐴 ) ) ) |
| 10 | 9 | necon2abid | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( -∞ < ( 𝑃 𝐷 𝐴 ) ↔ ( 𝑃 𝐷 𝐴 ) ≠ -∞ ) ) |
| 11 | 7 10 | mpbird | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → -∞ < ( 𝑃 𝐷 𝐴 ) ) |
| 12 | 11 | biantrurd | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑃 𝐷 𝐴 ) < +∞ ↔ ( -∞ < ( 𝑃 𝐷 𝐴 ) ∧ ( 𝑃 𝐷 𝐴 ) < +∞ ) ) ) |
| 13 | xrrebnd | ⊢ ( ( 𝑃 𝐷 𝐴 ) ∈ ℝ* → ( ( 𝑃 𝐷 𝐴 ) ∈ ℝ ↔ ( -∞ < ( 𝑃 𝐷 𝐴 ) ∧ ( 𝑃 𝐷 𝐴 ) < +∞ ) ) ) | |
| 14 | 4 13 | syl | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑃 𝐷 𝐴 ) ∈ ℝ ↔ ( -∞ < ( 𝑃 𝐷 𝐴 ) ∧ ( 𝑃 𝐷 𝐴 ) < +∞ ) ) ) |
| 15 | 12 14 | bitr4d | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑃 𝐷 𝐴 ) < +∞ ↔ ( 𝑃 𝐷 𝐴 ) ∈ ℝ ) ) |
| 16 | 15 | 3expa | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑃 𝐷 𝐴 ) < +∞ ↔ ( 𝑃 𝐷 𝐴 ) ∈ ℝ ) ) |
| 17 | 16 | pm5.32da | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) → ( ( 𝐴 ∈ 𝑋 ∧ ( 𝑃 𝐷 𝐴 ) < +∞ ) ↔ ( 𝐴 ∈ 𝑋 ∧ ( 𝑃 𝐷 𝐴 ) ∈ ℝ ) ) ) |
| 18 | 3 17 | bitrd | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) → ( 𝐴 ∈ ( 𝑃 ( ball ‘ 𝐷 ) +∞ ) ↔ ( 𝐴 ∈ 𝑋 ∧ ( 𝑃 𝐷 𝐴 ) ∈ ℝ ) ) ) |