This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the extended real addition operation. (Contributed by Mario Carneiro, 20-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xaddval | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 +𝑒 𝐵 ) = if ( 𝐴 = +∞ , if ( 𝐵 = -∞ , 0 , +∞ ) , if ( 𝐴 = -∞ , if ( 𝐵 = +∞ , 0 , -∞ ) , if ( 𝐵 = +∞ , +∞ , if ( 𝐵 = -∞ , -∞ , ( 𝐴 + 𝐵 ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → 𝑥 = 𝐴 ) | |
| 2 | 1 | eqeq1d | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝑥 = +∞ ↔ 𝐴 = +∞ ) ) |
| 3 | simpr | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → 𝑦 = 𝐵 ) | |
| 4 | 3 | eqeq1d | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝑦 = -∞ ↔ 𝐵 = -∞ ) ) |
| 5 | 4 | ifbid | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → if ( 𝑦 = -∞ , 0 , +∞ ) = if ( 𝐵 = -∞ , 0 , +∞ ) ) |
| 6 | 1 | eqeq1d | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝑥 = -∞ ↔ 𝐴 = -∞ ) ) |
| 7 | 3 | eqeq1d | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝑦 = +∞ ↔ 𝐵 = +∞ ) ) |
| 8 | 7 | ifbid | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → if ( 𝑦 = +∞ , 0 , -∞ ) = if ( 𝐵 = +∞ , 0 , -∞ ) ) |
| 9 | oveq12 | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝑥 + 𝑦 ) = ( 𝐴 + 𝐵 ) ) | |
| 10 | 4 9 | ifbieq2d | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → if ( 𝑦 = -∞ , -∞ , ( 𝑥 + 𝑦 ) ) = if ( 𝐵 = -∞ , -∞ , ( 𝐴 + 𝐵 ) ) ) |
| 11 | 7 10 | ifbieq2d | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → if ( 𝑦 = +∞ , +∞ , if ( 𝑦 = -∞ , -∞ , ( 𝑥 + 𝑦 ) ) ) = if ( 𝐵 = +∞ , +∞ , if ( 𝐵 = -∞ , -∞ , ( 𝐴 + 𝐵 ) ) ) ) |
| 12 | 6 8 11 | ifbieq12d | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → if ( 𝑥 = -∞ , if ( 𝑦 = +∞ , 0 , -∞ ) , if ( 𝑦 = +∞ , +∞ , if ( 𝑦 = -∞ , -∞ , ( 𝑥 + 𝑦 ) ) ) ) = if ( 𝐴 = -∞ , if ( 𝐵 = +∞ , 0 , -∞ ) , if ( 𝐵 = +∞ , +∞ , if ( 𝐵 = -∞ , -∞ , ( 𝐴 + 𝐵 ) ) ) ) ) |
| 13 | 2 5 12 | ifbieq12d | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → if ( 𝑥 = +∞ , if ( 𝑦 = -∞ , 0 , +∞ ) , if ( 𝑥 = -∞ , if ( 𝑦 = +∞ , 0 , -∞ ) , if ( 𝑦 = +∞ , +∞ , if ( 𝑦 = -∞ , -∞ , ( 𝑥 + 𝑦 ) ) ) ) ) = if ( 𝐴 = +∞ , if ( 𝐵 = -∞ , 0 , +∞ ) , if ( 𝐴 = -∞ , if ( 𝐵 = +∞ , 0 , -∞ ) , if ( 𝐵 = +∞ , +∞ , if ( 𝐵 = -∞ , -∞ , ( 𝐴 + 𝐵 ) ) ) ) ) ) |
| 14 | df-xadd | ⊢ +𝑒 = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ if ( 𝑥 = +∞ , if ( 𝑦 = -∞ , 0 , +∞ ) , if ( 𝑥 = -∞ , if ( 𝑦 = +∞ , 0 , -∞ ) , if ( 𝑦 = +∞ , +∞ , if ( 𝑦 = -∞ , -∞ , ( 𝑥 + 𝑦 ) ) ) ) ) ) | |
| 15 | c0ex | ⊢ 0 ∈ V | |
| 16 | pnfex | ⊢ +∞ ∈ V | |
| 17 | 15 16 | ifex | ⊢ if ( 𝐵 = -∞ , 0 , +∞ ) ∈ V |
| 18 | mnfxr | ⊢ -∞ ∈ ℝ* | |
| 19 | 18 | elexi | ⊢ -∞ ∈ V |
| 20 | 15 19 | ifex | ⊢ if ( 𝐵 = +∞ , 0 , -∞ ) ∈ V |
| 21 | ovex | ⊢ ( 𝐴 + 𝐵 ) ∈ V | |
| 22 | 19 21 | ifex | ⊢ if ( 𝐵 = -∞ , -∞ , ( 𝐴 + 𝐵 ) ) ∈ V |
| 23 | 16 22 | ifex | ⊢ if ( 𝐵 = +∞ , +∞ , if ( 𝐵 = -∞ , -∞ , ( 𝐴 + 𝐵 ) ) ) ∈ V |
| 24 | 20 23 | ifex | ⊢ if ( 𝐴 = -∞ , if ( 𝐵 = +∞ , 0 , -∞ ) , if ( 𝐵 = +∞ , +∞ , if ( 𝐵 = -∞ , -∞ , ( 𝐴 + 𝐵 ) ) ) ) ∈ V |
| 25 | 17 24 | ifex | ⊢ if ( 𝐴 = +∞ , if ( 𝐵 = -∞ , 0 , +∞ ) , if ( 𝐴 = -∞ , if ( 𝐵 = +∞ , 0 , -∞ ) , if ( 𝐵 = +∞ , +∞ , if ( 𝐵 = -∞ , -∞ , ( 𝐴 + 𝐵 ) ) ) ) ) ∈ V |
| 26 | 13 14 25 | ovmpoa | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 +𝑒 𝐵 ) = if ( 𝐴 = +∞ , if ( 𝐵 = -∞ , 0 , +∞ ) , if ( 𝐴 = -∞ , if ( 𝐵 = +∞ , 0 , -∞ ) , if ( 𝐵 = +∞ , +∞ , if ( 𝐵 = -∞ , -∞ , ( 𝐴 + 𝐵 ) ) ) ) ) ) |