This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define addition over extended real numbers. (Contributed by Mario Carneiro, 20-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-xadd | ⊢ +𝑒 = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ if ( 𝑥 = +∞ , if ( 𝑦 = -∞ , 0 , +∞ ) , if ( 𝑥 = -∞ , if ( 𝑦 = +∞ , 0 , -∞ ) , if ( 𝑦 = +∞ , +∞ , if ( 𝑦 = -∞ , -∞ , ( 𝑥 + 𝑦 ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cxad | ⊢ +𝑒 | |
| 1 | vx | ⊢ 𝑥 | |
| 2 | cxr | ⊢ ℝ* | |
| 3 | vy | ⊢ 𝑦 | |
| 4 | 1 | cv | ⊢ 𝑥 |
| 5 | cpnf | ⊢ +∞ | |
| 6 | 4 5 | wceq | ⊢ 𝑥 = +∞ |
| 7 | 3 | cv | ⊢ 𝑦 |
| 8 | cmnf | ⊢ -∞ | |
| 9 | 7 8 | wceq | ⊢ 𝑦 = -∞ |
| 10 | cc0 | ⊢ 0 | |
| 11 | 9 10 5 | cif | ⊢ if ( 𝑦 = -∞ , 0 , +∞ ) |
| 12 | 4 8 | wceq | ⊢ 𝑥 = -∞ |
| 13 | 7 5 | wceq | ⊢ 𝑦 = +∞ |
| 14 | 13 10 8 | cif | ⊢ if ( 𝑦 = +∞ , 0 , -∞ ) |
| 15 | caddc | ⊢ + | |
| 16 | 4 7 15 | co | ⊢ ( 𝑥 + 𝑦 ) |
| 17 | 9 8 16 | cif | ⊢ if ( 𝑦 = -∞ , -∞ , ( 𝑥 + 𝑦 ) ) |
| 18 | 13 5 17 | cif | ⊢ if ( 𝑦 = +∞ , +∞ , if ( 𝑦 = -∞ , -∞ , ( 𝑥 + 𝑦 ) ) ) |
| 19 | 12 14 18 | cif | ⊢ if ( 𝑥 = -∞ , if ( 𝑦 = +∞ , 0 , -∞ ) , if ( 𝑦 = +∞ , +∞ , if ( 𝑦 = -∞ , -∞ , ( 𝑥 + 𝑦 ) ) ) ) |
| 20 | 6 11 19 | cif | ⊢ if ( 𝑥 = +∞ , if ( 𝑦 = -∞ , 0 , +∞ ) , if ( 𝑥 = -∞ , if ( 𝑦 = +∞ , 0 , -∞ ) , if ( 𝑦 = +∞ , +∞ , if ( 𝑦 = -∞ , -∞ , ( 𝑥 + 𝑦 ) ) ) ) ) |
| 21 | 1 3 2 2 20 | cmpo | ⊢ ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ if ( 𝑥 = +∞ , if ( 𝑦 = -∞ , 0 , +∞ ) , if ( 𝑥 = -∞ , if ( 𝑦 = +∞ , 0 , -∞ ) , if ( 𝑦 = +∞ , +∞ , if ( 𝑦 = -∞ , -∞ , ( 𝑥 + 𝑦 ) ) ) ) ) ) |
| 22 | 0 21 | wceq | ⊢ +𝑒 = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ if ( 𝑥 = +∞ , if ( 𝑦 = -∞ , 0 , +∞ ) , if ( 𝑥 = -∞ , if ( 𝑦 = +∞ , 0 , -∞ ) , if ( 𝑦 = +∞ , +∞ , if ( 𝑦 = -∞ , -∞ , ( 𝑥 + 𝑦 ) ) ) ) ) ) |