This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The extended real addition operation is closed in extended reals. (Contributed by Mario Carneiro, 21-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xaddf | ⊢ +𝑒 : ( ℝ* × ℝ* ) ⟶ ℝ* |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0xr | ⊢ 0 ∈ ℝ* | |
| 2 | pnfxr | ⊢ +∞ ∈ ℝ* | |
| 3 | 1 2 | ifcli | ⊢ if ( 𝑦 = -∞ , 0 , +∞ ) ∈ ℝ* |
| 4 | 3 | a1i | ⊢ ( ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ∧ 𝑥 = +∞ ) → if ( 𝑦 = -∞ , 0 , +∞ ) ∈ ℝ* ) |
| 5 | mnfxr | ⊢ -∞ ∈ ℝ* | |
| 6 | 1 5 | ifcli | ⊢ if ( 𝑦 = +∞ , 0 , -∞ ) ∈ ℝ* |
| 7 | 6 | a1i | ⊢ ( ( ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ∧ ¬ 𝑥 = +∞ ) ∧ 𝑥 = -∞ ) → if ( 𝑦 = +∞ , 0 , -∞ ) ∈ ℝ* ) |
| 8 | 2 | a1i | ⊢ ( ( ( ( 𝑥 ∈ ℝ* ∧ ( ¬ 𝑥 = +∞ ∧ ¬ 𝑥 = -∞ ) ) ∧ 𝑦 ∈ ℝ* ) ∧ 𝑦 = +∞ ) → +∞ ∈ ℝ* ) |
| 9 | 5 | a1i | ⊢ ( ( ( ( ( 𝑥 ∈ ℝ* ∧ ( ¬ 𝑥 = +∞ ∧ ¬ 𝑥 = -∞ ) ) ∧ 𝑦 ∈ ℝ* ) ∧ ¬ 𝑦 = +∞ ) ∧ 𝑦 = -∞ ) → -∞ ∈ ℝ* ) |
| 10 | ioran | ⊢ ( ¬ ( 𝑥 = +∞ ∨ 𝑥 = -∞ ) ↔ ( ¬ 𝑥 = +∞ ∧ ¬ 𝑥 = -∞ ) ) | |
| 11 | elxr | ⊢ ( 𝑥 ∈ ℝ* ↔ ( 𝑥 ∈ ℝ ∨ 𝑥 = +∞ ∨ 𝑥 = -∞ ) ) | |
| 12 | 3orass | ⊢ ( ( 𝑥 ∈ ℝ ∨ 𝑥 = +∞ ∨ 𝑥 = -∞ ) ↔ ( 𝑥 ∈ ℝ ∨ ( 𝑥 = +∞ ∨ 𝑥 = -∞ ) ) ) | |
| 13 | 11 12 | sylbb | ⊢ ( 𝑥 ∈ ℝ* → ( 𝑥 ∈ ℝ ∨ ( 𝑥 = +∞ ∨ 𝑥 = -∞ ) ) ) |
| 14 | 13 | ord | ⊢ ( 𝑥 ∈ ℝ* → ( ¬ 𝑥 ∈ ℝ → ( 𝑥 = +∞ ∨ 𝑥 = -∞ ) ) ) |
| 15 | 14 | con1d | ⊢ ( 𝑥 ∈ ℝ* → ( ¬ ( 𝑥 = +∞ ∨ 𝑥 = -∞ ) → 𝑥 ∈ ℝ ) ) |
| 16 | 15 | imp | ⊢ ( ( 𝑥 ∈ ℝ* ∧ ¬ ( 𝑥 = +∞ ∨ 𝑥 = -∞ ) ) → 𝑥 ∈ ℝ ) |
| 17 | 10 16 | sylan2br | ⊢ ( ( 𝑥 ∈ ℝ* ∧ ( ¬ 𝑥 = +∞ ∧ ¬ 𝑥 = -∞ ) ) → 𝑥 ∈ ℝ ) |
| 18 | ioran | ⊢ ( ¬ ( 𝑦 = +∞ ∨ 𝑦 = -∞ ) ↔ ( ¬ 𝑦 = +∞ ∧ ¬ 𝑦 = -∞ ) ) | |
| 19 | elxr | ⊢ ( 𝑦 ∈ ℝ* ↔ ( 𝑦 ∈ ℝ ∨ 𝑦 = +∞ ∨ 𝑦 = -∞ ) ) | |
| 20 | 3orass | ⊢ ( ( 𝑦 ∈ ℝ ∨ 𝑦 = +∞ ∨ 𝑦 = -∞ ) ↔ ( 𝑦 ∈ ℝ ∨ ( 𝑦 = +∞ ∨ 𝑦 = -∞ ) ) ) | |
| 21 | 19 20 | sylbb | ⊢ ( 𝑦 ∈ ℝ* → ( 𝑦 ∈ ℝ ∨ ( 𝑦 = +∞ ∨ 𝑦 = -∞ ) ) ) |
| 22 | 21 | ord | ⊢ ( 𝑦 ∈ ℝ* → ( ¬ 𝑦 ∈ ℝ → ( 𝑦 = +∞ ∨ 𝑦 = -∞ ) ) ) |
| 23 | 22 | con1d | ⊢ ( 𝑦 ∈ ℝ* → ( ¬ ( 𝑦 = +∞ ∨ 𝑦 = -∞ ) → 𝑦 ∈ ℝ ) ) |
| 24 | 23 | imp | ⊢ ( ( 𝑦 ∈ ℝ* ∧ ¬ ( 𝑦 = +∞ ∨ 𝑦 = -∞ ) ) → 𝑦 ∈ ℝ ) |
| 25 | 18 24 | sylan2br | ⊢ ( ( 𝑦 ∈ ℝ* ∧ ( ¬ 𝑦 = +∞ ∧ ¬ 𝑦 = -∞ ) ) → 𝑦 ∈ ℝ ) |
| 26 | readdcl | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑥 + 𝑦 ) ∈ ℝ ) | |
| 27 | 17 25 26 | syl2an | ⊢ ( ( ( 𝑥 ∈ ℝ* ∧ ( ¬ 𝑥 = +∞ ∧ ¬ 𝑥 = -∞ ) ) ∧ ( 𝑦 ∈ ℝ* ∧ ( ¬ 𝑦 = +∞ ∧ ¬ 𝑦 = -∞ ) ) ) → ( 𝑥 + 𝑦 ) ∈ ℝ ) |
| 28 | 27 | rexrd | ⊢ ( ( ( 𝑥 ∈ ℝ* ∧ ( ¬ 𝑥 = +∞ ∧ ¬ 𝑥 = -∞ ) ) ∧ ( 𝑦 ∈ ℝ* ∧ ( ¬ 𝑦 = +∞ ∧ ¬ 𝑦 = -∞ ) ) ) → ( 𝑥 + 𝑦 ) ∈ ℝ* ) |
| 29 | 28 | anassrs | ⊢ ( ( ( ( 𝑥 ∈ ℝ* ∧ ( ¬ 𝑥 = +∞ ∧ ¬ 𝑥 = -∞ ) ) ∧ 𝑦 ∈ ℝ* ) ∧ ( ¬ 𝑦 = +∞ ∧ ¬ 𝑦 = -∞ ) ) → ( 𝑥 + 𝑦 ) ∈ ℝ* ) |
| 30 | 29 | anassrs | ⊢ ( ( ( ( ( 𝑥 ∈ ℝ* ∧ ( ¬ 𝑥 = +∞ ∧ ¬ 𝑥 = -∞ ) ) ∧ 𝑦 ∈ ℝ* ) ∧ ¬ 𝑦 = +∞ ) ∧ ¬ 𝑦 = -∞ ) → ( 𝑥 + 𝑦 ) ∈ ℝ* ) |
| 31 | 9 30 | ifclda | ⊢ ( ( ( ( 𝑥 ∈ ℝ* ∧ ( ¬ 𝑥 = +∞ ∧ ¬ 𝑥 = -∞ ) ) ∧ 𝑦 ∈ ℝ* ) ∧ ¬ 𝑦 = +∞ ) → if ( 𝑦 = -∞ , -∞ , ( 𝑥 + 𝑦 ) ) ∈ ℝ* ) |
| 32 | 8 31 | ifclda | ⊢ ( ( ( 𝑥 ∈ ℝ* ∧ ( ¬ 𝑥 = +∞ ∧ ¬ 𝑥 = -∞ ) ) ∧ 𝑦 ∈ ℝ* ) → if ( 𝑦 = +∞ , +∞ , if ( 𝑦 = -∞ , -∞ , ( 𝑥 + 𝑦 ) ) ) ∈ ℝ* ) |
| 33 | 32 | an32s | ⊢ ( ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ∧ ( ¬ 𝑥 = +∞ ∧ ¬ 𝑥 = -∞ ) ) → if ( 𝑦 = +∞ , +∞ , if ( 𝑦 = -∞ , -∞ , ( 𝑥 + 𝑦 ) ) ) ∈ ℝ* ) |
| 34 | 33 | anassrs | ⊢ ( ( ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ∧ ¬ 𝑥 = +∞ ) ∧ ¬ 𝑥 = -∞ ) → if ( 𝑦 = +∞ , +∞ , if ( 𝑦 = -∞ , -∞ , ( 𝑥 + 𝑦 ) ) ) ∈ ℝ* ) |
| 35 | 7 34 | ifclda | ⊢ ( ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ∧ ¬ 𝑥 = +∞ ) → if ( 𝑥 = -∞ , if ( 𝑦 = +∞ , 0 , -∞ ) , if ( 𝑦 = +∞ , +∞ , if ( 𝑦 = -∞ , -∞ , ( 𝑥 + 𝑦 ) ) ) ) ∈ ℝ* ) |
| 36 | 4 35 | ifclda | ⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → if ( 𝑥 = +∞ , if ( 𝑦 = -∞ , 0 , +∞ ) , if ( 𝑥 = -∞ , if ( 𝑦 = +∞ , 0 , -∞ ) , if ( 𝑦 = +∞ , +∞ , if ( 𝑦 = -∞ , -∞ , ( 𝑥 + 𝑦 ) ) ) ) ) ∈ ℝ* ) |
| 37 | 36 | rgen2 | ⊢ ∀ 𝑥 ∈ ℝ* ∀ 𝑦 ∈ ℝ* if ( 𝑥 = +∞ , if ( 𝑦 = -∞ , 0 , +∞ ) , if ( 𝑥 = -∞ , if ( 𝑦 = +∞ , 0 , -∞ ) , if ( 𝑦 = +∞ , +∞ , if ( 𝑦 = -∞ , -∞ , ( 𝑥 + 𝑦 ) ) ) ) ) ∈ ℝ* |
| 38 | df-xadd | ⊢ +𝑒 = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ if ( 𝑥 = +∞ , if ( 𝑦 = -∞ , 0 , +∞ ) , if ( 𝑥 = -∞ , if ( 𝑦 = +∞ , 0 , -∞ ) , if ( 𝑦 = +∞ , +∞ , if ( 𝑦 = -∞ , -∞ , ( 𝑥 + 𝑦 ) ) ) ) ) ) | |
| 39 | 38 | fmpo | ⊢ ( ∀ 𝑥 ∈ ℝ* ∀ 𝑦 ∈ ℝ* if ( 𝑥 = +∞ , if ( 𝑦 = -∞ , 0 , +∞ ) , if ( 𝑥 = -∞ , if ( 𝑦 = +∞ , 0 , -∞ ) , if ( 𝑦 = +∞ , +∞ , if ( 𝑦 = -∞ , -∞ , ( 𝑥 + 𝑦 ) ) ) ) ) ∈ ℝ* ↔ +𝑒 : ( ℝ* × ℝ* ) ⟶ ℝ* ) |
| 40 | 37 39 | mpbi | ⊢ +𝑒 : ( ℝ* × ℝ* ) ⟶ ℝ* |