This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the extended real addition operation. (Contributed by Mario Carneiro, 20-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xaddval | |- ( ( A e. RR* /\ B e. RR* ) -> ( A +e B ) = if ( A = +oo , if ( B = -oo , 0 , +oo ) , if ( A = -oo , if ( B = +oo , 0 , -oo ) , if ( B = +oo , +oo , if ( B = -oo , -oo , ( A + B ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | |- ( ( x = A /\ y = B ) -> x = A ) |
|
| 2 | 1 | eqeq1d | |- ( ( x = A /\ y = B ) -> ( x = +oo <-> A = +oo ) ) |
| 3 | simpr | |- ( ( x = A /\ y = B ) -> y = B ) |
|
| 4 | 3 | eqeq1d | |- ( ( x = A /\ y = B ) -> ( y = -oo <-> B = -oo ) ) |
| 5 | 4 | ifbid | |- ( ( x = A /\ y = B ) -> if ( y = -oo , 0 , +oo ) = if ( B = -oo , 0 , +oo ) ) |
| 6 | 1 | eqeq1d | |- ( ( x = A /\ y = B ) -> ( x = -oo <-> A = -oo ) ) |
| 7 | 3 | eqeq1d | |- ( ( x = A /\ y = B ) -> ( y = +oo <-> B = +oo ) ) |
| 8 | 7 | ifbid | |- ( ( x = A /\ y = B ) -> if ( y = +oo , 0 , -oo ) = if ( B = +oo , 0 , -oo ) ) |
| 9 | oveq12 | |- ( ( x = A /\ y = B ) -> ( x + y ) = ( A + B ) ) |
|
| 10 | 4 9 | ifbieq2d | |- ( ( x = A /\ y = B ) -> if ( y = -oo , -oo , ( x + y ) ) = if ( B = -oo , -oo , ( A + B ) ) ) |
| 11 | 7 10 | ifbieq2d | |- ( ( x = A /\ y = B ) -> if ( y = +oo , +oo , if ( y = -oo , -oo , ( x + y ) ) ) = if ( B = +oo , +oo , if ( B = -oo , -oo , ( A + B ) ) ) ) |
| 12 | 6 8 11 | ifbieq12d | |- ( ( x = A /\ y = B ) -> if ( x = -oo , if ( y = +oo , 0 , -oo ) , if ( y = +oo , +oo , if ( y = -oo , -oo , ( x + y ) ) ) ) = if ( A = -oo , if ( B = +oo , 0 , -oo ) , if ( B = +oo , +oo , if ( B = -oo , -oo , ( A + B ) ) ) ) ) |
| 13 | 2 5 12 | ifbieq12d | |- ( ( x = A /\ y = B ) -> if ( x = +oo , if ( y = -oo , 0 , +oo ) , if ( x = -oo , if ( y = +oo , 0 , -oo ) , if ( y = +oo , +oo , if ( y = -oo , -oo , ( x + y ) ) ) ) ) = if ( A = +oo , if ( B = -oo , 0 , +oo ) , if ( A = -oo , if ( B = +oo , 0 , -oo ) , if ( B = +oo , +oo , if ( B = -oo , -oo , ( A + B ) ) ) ) ) ) |
| 14 | df-xadd | |- +e = ( x e. RR* , y e. RR* |-> if ( x = +oo , if ( y = -oo , 0 , +oo ) , if ( x = -oo , if ( y = +oo , 0 , -oo ) , if ( y = +oo , +oo , if ( y = -oo , -oo , ( x + y ) ) ) ) ) ) |
|
| 15 | c0ex | |- 0 e. _V |
|
| 16 | pnfex | |- +oo e. _V |
|
| 17 | 15 16 | ifex | |- if ( B = -oo , 0 , +oo ) e. _V |
| 18 | mnfxr | |- -oo e. RR* |
|
| 19 | 18 | elexi | |- -oo e. _V |
| 20 | 15 19 | ifex | |- if ( B = +oo , 0 , -oo ) e. _V |
| 21 | ovex | |- ( A + B ) e. _V |
|
| 22 | 19 21 | ifex | |- if ( B = -oo , -oo , ( A + B ) ) e. _V |
| 23 | 16 22 | ifex | |- if ( B = +oo , +oo , if ( B = -oo , -oo , ( A + B ) ) ) e. _V |
| 24 | 20 23 | ifex | |- if ( A = -oo , if ( B = +oo , 0 , -oo ) , if ( B = +oo , +oo , if ( B = -oo , -oo , ( A + B ) ) ) ) e. _V |
| 25 | 17 24 | ifex | |- if ( A = +oo , if ( B = -oo , 0 , +oo ) , if ( A = -oo , if ( B = +oo , 0 , -oo ) , if ( B = +oo , +oo , if ( B = -oo , -oo , ( A + B ) ) ) ) ) e. _V |
| 26 | 13 14 25 | ovmpoa | |- ( ( A e. RR* /\ B e. RR* ) -> ( A +e B ) = if ( A = +oo , if ( B = -oo , 0 , +oo ) , if ( A = -oo , if ( B = +oo , 0 , -oo ) , if ( B = +oo , +oo , if ( B = -oo , -oo , ( A + B ) ) ) ) ) ) |