This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The extended real addition operation is closed in extended reals. (Contributed by Mario Carneiro, 21-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xaddf | |- +e : ( RR* X. RR* ) --> RR* |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0xr | |- 0 e. RR* |
|
| 2 | pnfxr | |- +oo e. RR* |
|
| 3 | 1 2 | ifcli | |- if ( y = -oo , 0 , +oo ) e. RR* |
| 4 | 3 | a1i | |- ( ( ( x e. RR* /\ y e. RR* ) /\ x = +oo ) -> if ( y = -oo , 0 , +oo ) e. RR* ) |
| 5 | mnfxr | |- -oo e. RR* |
|
| 6 | 1 5 | ifcli | |- if ( y = +oo , 0 , -oo ) e. RR* |
| 7 | 6 | a1i | |- ( ( ( ( x e. RR* /\ y e. RR* ) /\ -. x = +oo ) /\ x = -oo ) -> if ( y = +oo , 0 , -oo ) e. RR* ) |
| 8 | 2 | a1i | |- ( ( ( ( x e. RR* /\ ( -. x = +oo /\ -. x = -oo ) ) /\ y e. RR* ) /\ y = +oo ) -> +oo e. RR* ) |
| 9 | 5 | a1i | |- ( ( ( ( ( x e. RR* /\ ( -. x = +oo /\ -. x = -oo ) ) /\ y e. RR* ) /\ -. y = +oo ) /\ y = -oo ) -> -oo e. RR* ) |
| 10 | ioran | |- ( -. ( x = +oo \/ x = -oo ) <-> ( -. x = +oo /\ -. x = -oo ) ) |
|
| 11 | elxr | |- ( x e. RR* <-> ( x e. RR \/ x = +oo \/ x = -oo ) ) |
|
| 12 | 3orass | |- ( ( x e. RR \/ x = +oo \/ x = -oo ) <-> ( x e. RR \/ ( x = +oo \/ x = -oo ) ) ) |
|
| 13 | 11 12 | sylbb | |- ( x e. RR* -> ( x e. RR \/ ( x = +oo \/ x = -oo ) ) ) |
| 14 | 13 | ord | |- ( x e. RR* -> ( -. x e. RR -> ( x = +oo \/ x = -oo ) ) ) |
| 15 | 14 | con1d | |- ( x e. RR* -> ( -. ( x = +oo \/ x = -oo ) -> x e. RR ) ) |
| 16 | 15 | imp | |- ( ( x e. RR* /\ -. ( x = +oo \/ x = -oo ) ) -> x e. RR ) |
| 17 | 10 16 | sylan2br | |- ( ( x e. RR* /\ ( -. x = +oo /\ -. x = -oo ) ) -> x e. RR ) |
| 18 | ioran | |- ( -. ( y = +oo \/ y = -oo ) <-> ( -. y = +oo /\ -. y = -oo ) ) |
|
| 19 | elxr | |- ( y e. RR* <-> ( y e. RR \/ y = +oo \/ y = -oo ) ) |
|
| 20 | 3orass | |- ( ( y e. RR \/ y = +oo \/ y = -oo ) <-> ( y e. RR \/ ( y = +oo \/ y = -oo ) ) ) |
|
| 21 | 19 20 | sylbb | |- ( y e. RR* -> ( y e. RR \/ ( y = +oo \/ y = -oo ) ) ) |
| 22 | 21 | ord | |- ( y e. RR* -> ( -. y e. RR -> ( y = +oo \/ y = -oo ) ) ) |
| 23 | 22 | con1d | |- ( y e. RR* -> ( -. ( y = +oo \/ y = -oo ) -> y e. RR ) ) |
| 24 | 23 | imp | |- ( ( y e. RR* /\ -. ( y = +oo \/ y = -oo ) ) -> y e. RR ) |
| 25 | 18 24 | sylan2br | |- ( ( y e. RR* /\ ( -. y = +oo /\ -. y = -oo ) ) -> y e. RR ) |
| 26 | readdcl | |- ( ( x e. RR /\ y e. RR ) -> ( x + y ) e. RR ) |
|
| 27 | 17 25 26 | syl2an | |- ( ( ( x e. RR* /\ ( -. x = +oo /\ -. x = -oo ) ) /\ ( y e. RR* /\ ( -. y = +oo /\ -. y = -oo ) ) ) -> ( x + y ) e. RR ) |
| 28 | 27 | rexrd | |- ( ( ( x e. RR* /\ ( -. x = +oo /\ -. x = -oo ) ) /\ ( y e. RR* /\ ( -. y = +oo /\ -. y = -oo ) ) ) -> ( x + y ) e. RR* ) |
| 29 | 28 | anassrs | |- ( ( ( ( x e. RR* /\ ( -. x = +oo /\ -. x = -oo ) ) /\ y e. RR* ) /\ ( -. y = +oo /\ -. y = -oo ) ) -> ( x + y ) e. RR* ) |
| 30 | 29 | anassrs | |- ( ( ( ( ( x e. RR* /\ ( -. x = +oo /\ -. x = -oo ) ) /\ y e. RR* ) /\ -. y = +oo ) /\ -. y = -oo ) -> ( x + y ) e. RR* ) |
| 31 | 9 30 | ifclda | |- ( ( ( ( x e. RR* /\ ( -. x = +oo /\ -. x = -oo ) ) /\ y e. RR* ) /\ -. y = +oo ) -> if ( y = -oo , -oo , ( x + y ) ) e. RR* ) |
| 32 | 8 31 | ifclda | |- ( ( ( x e. RR* /\ ( -. x = +oo /\ -. x = -oo ) ) /\ y e. RR* ) -> if ( y = +oo , +oo , if ( y = -oo , -oo , ( x + y ) ) ) e. RR* ) |
| 33 | 32 | an32s | |- ( ( ( x e. RR* /\ y e. RR* ) /\ ( -. x = +oo /\ -. x = -oo ) ) -> if ( y = +oo , +oo , if ( y = -oo , -oo , ( x + y ) ) ) e. RR* ) |
| 34 | 33 | anassrs | |- ( ( ( ( x e. RR* /\ y e. RR* ) /\ -. x = +oo ) /\ -. x = -oo ) -> if ( y = +oo , +oo , if ( y = -oo , -oo , ( x + y ) ) ) e. RR* ) |
| 35 | 7 34 | ifclda | |- ( ( ( x e. RR* /\ y e. RR* ) /\ -. x = +oo ) -> if ( x = -oo , if ( y = +oo , 0 , -oo ) , if ( y = +oo , +oo , if ( y = -oo , -oo , ( x + y ) ) ) ) e. RR* ) |
| 36 | 4 35 | ifclda | |- ( ( x e. RR* /\ y e. RR* ) -> if ( x = +oo , if ( y = -oo , 0 , +oo ) , if ( x = -oo , if ( y = +oo , 0 , -oo ) , if ( y = +oo , +oo , if ( y = -oo , -oo , ( x + y ) ) ) ) ) e. RR* ) |
| 37 | 36 | rgen2 | |- A. x e. RR* A. y e. RR* if ( x = +oo , if ( y = -oo , 0 , +oo ) , if ( x = -oo , if ( y = +oo , 0 , -oo ) , if ( y = +oo , +oo , if ( y = -oo , -oo , ( x + y ) ) ) ) ) e. RR* |
| 38 | df-xadd | |- +e = ( x e. RR* , y e. RR* |-> if ( x = +oo , if ( y = -oo , 0 , +oo ) , if ( x = -oo , if ( y = +oo , 0 , -oo ) , if ( y = +oo , +oo , if ( y = -oo , -oo , ( x + y ) ) ) ) ) ) |
|
| 39 | 38 | fmpo | |- ( A. x e. RR* A. y e. RR* if ( x = +oo , if ( y = -oo , 0 , +oo ) , if ( x = -oo , if ( y = +oo , 0 , -oo ) , if ( y = +oo , +oo , if ( y = -oo , -oo , ( x + y ) ) ) ) ) e. RR* <-> +e : ( RR* X. RR* ) --> RR* ) |
| 40 | 37 39 | mpbi | |- +e : ( RR* X. RR* ) --> RR* |