This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A weak universe is closed under the natural transformation operation. (Contributed by Mario Carneiro, 12-Jan-2017) (Proof shortened by AV, 13-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | wunnat.1 | ⊢ ( 𝜑 → 𝑈 ∈ WUni ) | |
| wunnat.2 | ⊢ ( 𝜑 → 𝐶 ∈ 𝑈 ) | ||
| wunnat.3 | ⊢ ( 𝜑 → 𝐷 ∈ 𝑈 ) | ||
| Assertion | wunnat | ⊢ ( 𝜑 → ( 𝐶 Nat 𝐷 ) ∈ 𝑈 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wunnat.1 | ⊢ ( 𝜑 → 𝑈 ∈ WUni ) | |
| 2 | wunnat.2 | ⊢ ( 𝜑 → 𝐶 ∈ 𝑈 ) | |
| 3 | wunnat.3 | ⊢ ( 𝜑 → 𝐷 ∈ 𝑈 ) | |
| 4 | 1 2 3 | wunfunc | ⊢ ( 𝜑 → ( 𝐶 Func 𝐷 ) ∈ 𝑈 ) |
| 5 | 1 4 4 | wunxp | ⊢ ( 𝜑 → ( ( 𝐶 Func 𝐷 ) × ( 𝐶 Func 𝐷 ) ) ∈ 𝑈 ) |
| 6 | homid | ⊢ Hom = Slot ( Hom ‘ ndx ) | |
| 7 | 6 1 3 | wunstr | ⊢ ( 𝜑 → ( Hom ‘ 𝐷 ) ∈ 𝑈 ) |
| 8 | 1 7 | wunrn | ⊢ ( 𝜑 → ran ( Hom ‘ 𝐷 ) ∈ 𝑈 ) |
| 9 | 1 8 | wununi | ⊢ ( 𝜑 → ∪ ran ( Hom ‘ 𝐷 ) ∈ 𝑈 ) |
| 10 | baseid | ⊢ Base = Slot ( Base ‘ ndx ) | |
| 11 | 10 1 2 | wunstr | ⊢ ( 𝜑 → ( Base ‘ 𝐶 ) ∈ 𝑈 ) |
| 12 | 1 9 11 | wunmap | ⊢ ( 𝜑 → ( ∪ ran ( Hom ‘ 𝐷 ) ↑m ( Base ‘ 𝐶 ) ) ∈ 𝑈 ) |
| 13 | 1 12 | wunpw | ⊢ ( 𝜑 → 𝒫 ( ∪ ran ( Hom ‘ 𝐷 ) ↑m ( Base ‘ 𝐶 ) ) ∈ 𝑈 ) |
| 14 | fvex | ⊢ ( 1st ‘ 𝑓 ) ∈ V | |
| 15 | fvex | ⊢ ( 1st ‘ 𝑔 ) ∈ V | |
| 16 | ovex | ⊢ ( ∪ ran ( Hom ‘ 𝐷 ) ↑m ( Base ‘ 𝐶 ) ) ∈ V | |
| 17 | ssrab2 | ⊢ { 𝑎 ∈ X 𝑥 ∈ ( Base ‘ 𝐶 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ 𝑧 ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ 𝑧 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } ⊆ X 𝑥 ∈ ( Base ‘ 𝐶 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑠 ‘ 𝑥 ) ) | |
| 18 | ovssunirn | ⊢ ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑠 ‘ 𝑥 ) ) ⊆ ∪ ran ( Hom ‘ 𝐷 ) | |
| 19 | 18 | rgenw | ⊢ ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑠 ‘ 𝑥 ) ) ⊆ ∪ ran ( Hom ‘ 𝐷 ) |
| 20 | ss2ixp | ⊢ ( ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑠 ‘ 𝑥 ) ) ⊆ ∪ ran ( Hom ‘ 𝐷 ) → X 𝑥 ∈ ( Base ‘ 𝐶 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑠 ‘ 𝑥 ) ) ⊆ X 𝑥 ∈ ( Base ‘ 𝐶 ) ∪ ran ( Hom ‘ 𝐷 ) ) | |
| 21 | 19 20 | ax-mp | ⊢ X 𝑥 ∈ ( Base ‘ 𝐶 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑠 ‘ 𝑥 ) ) ⊆ X 𝑥 ∈ ( Base ‘ 𝐶 ) ∪ ran ( Hom ‘ 𝐷 ) |
| 22 | fvex | ⊢ ( Base ‘ 𝐶 ) ∈ V | |
| 23 | fvex | ⊢ ( Hom ‘ 𝐷 ) ∈ V | |
| 24 | 23 | rnex | ⊢ ran ( Hom ‘ 𝐷 ) ∈ V |
| 25 | 24 | uniex | ⊢ ∪ ran ( Hom ‘ 𝐷 ) ∈ V |
| 26 | 22 25 | ixpconst | ⊢ X 𝑥 ∈ ( Base ‘ 𝐶 ) ∪ ran ( Hom ‘ 𝐷 ) = ( ∪ ran ( Hom ‘ 𝐷 ) ↑m ( Base ‘ 𝐶 ) ) |
| 27 | 21 26 | sseqtri | ⊢ X 𝑥 ∈ ( Base ‘ 𝐶 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑠 ‘ 𝑥 ) ) ⊆ ( ∪ ran ( Hom ‘ 𝐷 ) ↑m ( Base ‘ 𝐶 ) ) |
| 28 | 17 27 | sstri | ⊢ { 𝑎 ∈ X 𝑥 ∈ ( Base ‘ 𝐶 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ 𝑧 ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ 𝑧 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } ⊆ ( ∪ ran ( Hom ‘ 𝐷 ) ↑m ( Base ‘ 𝐶 ) ) |
| 29 | 16 28 | elpwi2 | ⊢ { 𝑎 ∈ X 𝑥 ∈ ( Base ‘ 𝐶 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ 𝑧 ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ 𝑧 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } ∈ 𝒫 ( ∪ ran ( Hom ‘ 𝐷 ) ↑m ( Base ‘ 𝐶 ) ) |
| 30 | 29 | sbcth | ⊢ ( ( 1st ‘ 𝑔 ) ∈ V → [ ( 1st ‘ 𝑔 ) / 𝑠 ] { 𝑎 ∈ X 𝑥 ∈ ( Base ‘ 𝐶 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ 𝑧 ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ 𝑧 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } ∈ 𝒫 ( ∪ ran ( Hom ‘ 𝐷 ) ↑m ( Base ‘ 𝐶 ) ) ) |
| 31 | sbcel1g | ⊢ ( ( 1st ‘ 𝑔 ) ∈ V → ( [ ( 1st ‘ 𝑔 ) / 𝑠 ] { 𝑎 ∈ X 𝑥 ∈ ( Base ‘ 𝐶 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ 𝑧 ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ 𝑧 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } ∈ 𝒫 ( ∪ ran ( Hom ‘ 𝐷 ) ↑m ( Base ‘ 𝐶 ) ) ↔ ⦋ ( 1st ‘ 𝑔 ) / 𝑠 ⦌ { 𝑎 ∈ X 𝑥 ∈ ( Base ‘ 𝐶 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ 𝑧 ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ 𝑧 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } ∈ 𝒫 ( ∪ ran ( Hom ‘ 𝐷 ) ↑m ( Base ‘ 𝐶 ) ) ) ) | |
| 32 | 30 31 | mpbid | ⊢ ( ( 1st ‘ 𝑔 ) ∈ V → ⦋ ( 1st ‘ 𝑔 ) / 𝑠 ⦌ { 𝑎 ∈ X 𝑥 ∈ ( Base ‘ 𝐶 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ 𝑧 ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ 𝑧 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } ∈ 𝒫 ( ∪ ran ( Hom ‘ 𝐷 ) ↑m ( Base ‘ 𝐶 ) ) ) |
| 33 | 15 32 | ax-mp | ⊢ ⦋ ( 1st ‘ 𝑔 ) / 𝑠 ⦌ { 𝑎 ∈ X 𝑥 ∈ ( Base ‘ 𝐶 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ 𝑧 ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ 𝑧 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } ∈ 𝒫 ( ∪ ran ( Hom ‘ 𝐷 ) ↑m ( Base ‘ 𝐶 ) ) |
| 34 | 33 | sbcth | ⊢ ( ( 1st ‘ 𝑓 ) ∈ V → [ ( 1st ‘ 𝑓 ) / 𝑟 ] ⦋ ( 1st ‘ 𝑔 ) / 𝑠 ⦌ { 𝑎 ∈ X 𝑥 ∈ ( Base ‘ 𝐶 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ 𝑧 ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ 𝑧 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } ∈ 𝒫 ( ∪ ran ( Hom ‘ 𝐷 ) ↑m ( Base ‘ 𝐶 ) ) ) |
| 35 | sbcel1g | ⊢ ( ( 1st ‘ 𝑓 ) ∈ V → ( [ ( 1st ‘ 𝑓 ) / 𝑟 ] ⦋ ( 1st ‘ 𝑔 ) / 𝑠 ⦌ { 𝑎 ∈ X 𝑥 ∈ ( Base ‘ 𝐶 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ 𝑧 ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ 𝑧 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } ∈ 𝒫 ( ∪ ran ( Hom ‘ 𝐷 ) ↑m ( Base ‘ 𝐶 ) ) ↔ ⦋ ( 1st ‘ 𝑓 ) / 𝑟 ⦌ ⦋ ( 1st ‘ 𝑔 ) / 𝑠 ⦌ { 𝑎 ∈ X 𝑥 ∈ ( Base ‘ 𝐶 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ 𝑧 ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ 𝑧 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } ∈ 𝒫 ( ∪ ran ( Hom ‘ 𝐷 ) ↑m ( Base ‘ 𝐶 ) ) ) ) | |
| 36 | 34 35 | mpbid | ⊢ ( ( 1st ‘ 𝑓 ) ∈ V → ⦋ ( 1st ‘ 𝑓 ) / 𝑟 ⦌ ⦋ ( 1st ‘ 𝑔 ) / 𝑠 ⦌ { 𝑎 ∈ X 𝑥 ∈ ( Base ‘ 𝐶 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ 𝑧 ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ 𝑧 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } ∈ 𝒫 ( ∪ ran ( Hom ‘ 𝐷 ) ↑m ( Base ‘ 𝐶 ) ) ) |
| 37 | 14 36 | ax-mp | ⊢ ⦋ ( 1st ‘ 𝑓 ) / 𝑟 ⦌ ⦋ ( 1st ‘ 𝑔 ) / 𝑠 ⦌ { 𝑎 ∈ X 𝑥 ∈ ( Base ‘ 𝐶 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ 𝑧 ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ 𝑧 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } ∈ 𝒫 ( ∪ ran ( Hom ‘ 𝐷 ) ↑m ( Base ‘ 𝐶 ) ) |
| 38 | 37 | rgen2w | ⊢ ∀ 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∀ 𝑔 ∈ ( 𝐶 Func 𝐷 ) ⦋ ( 1st ‘ 𝑓 ) / 𝑟 ⦌ ⦋ ( 1st ‘ 𝑔 ) / 𝑠 ⦌ { 𝑎 ∈ X 𝑥 ∈ ( Base ‘ 𝐶 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ 𝑧 ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ 𝑧 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } ∈ 𝒫 ( ∪ ran ( Hom ‘ 𝐷 ) ↑m ( Base ‘ 𝐶 ) ) |
| 39 | eqid | ⊢ ( 𝐶 Nat 𝐷 ) = ( 𝐶 Nat 𝐷 ) | |
| 40 | eqid | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) | |
| 41 | eqid | ⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) | |
| 42 | eqid | ⊢ ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 ) | |
| 43 | eqid | ⊢ ( comp ‘ 𝐷 ) = ( comp ‘ 𝐷 ) | |
| 44 | 39 40 41 42 43 | natfval | ⊢ ( 𝐶 Nat 𝐷 ) = ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) , 𝑔 ∈ ( 𝐶 Func 𝐷 ) ↦ ⦋ ( 1st ‘ 𝑓 ) / 𝑟 ⦌ ⦋ ( 1st ‘ 𝑔 ) / 𝑠 ⦌ { 𝑎 ∈ X 𝑥 ∈ ( Base ‘ 𝐶 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ 𝑧 ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ 𝑧 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } ) |
| 45 | 44 | fmpo | ⊢ ( ∀ 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∀ 𝑔 ∈ ( 𝐶 Func 𝐷 ) ⦋ ( 1st ‘ 𝑓 ) / 𝑟 ⦌ ⦋ ( 1st ‘ 𝑔 ) / 𝑠 ⦌ { 𝑎 ∈ X 𝑥 ∈ ( Base ‘ 𝐶 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ 𝑧 ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ 𝑧 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } ∈ 𝒫 ( ∪ ran ( Hom ‘ 𝐷 ) ↑m ( Base ‘ 𝐶 ) ) ↔ ( 𝐶 Nat 𝐷 ) : ( ( 𝐶 Func 𝐷 ) × ( 𝐶 Func 𝐷 ) ) ⟶ 𝒫 ( ∪ ran ( Hom ‘ 𝐷 ) ↑m ( Base ‘ 𝐶 ) ) ) |
| 46 | 38 45 | mpbi | ⊢ ( 𝐶 Nat 𝐷 ) : ( ( 𝐶 Func 𝐷 ) × ( 𝐶 Func 𝐷 ) ) ⟶ 𝒫 ( ∪ ran ( Hom ‘ 𝐷 ) ↑m ( Base ‘ 𝐶 ) ) |
| 47 | 46 | a1i | ⊢ ( 𝜑 → ( 𝐶 Nat 𝐷 ) : ( ( 𝐶 Func 𝐷 ) × ( 𝐶 Func 𝐷 ) ) ⟶ 𝒫 ( ∪ ran ( Hom ‘ 𝐷 ) ↑m ( Base ‘ 𝐶 ) ) ) |
| 48 | 1 5 13 47 | wunf | ⊢ ( 𝜑 → ( 𝐶 Nat 𝐷 ) ∈ 𝑈 ) |