This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A word of length 3 is a length 3 string. (Contributed by AV, 18-May-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | wrdl3s3 | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 3 ) ↔ ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 ∃ 𝑐 ∈ 𝑉 𝑊 = 〈“ 𝑎 𝑏 𝑐 ”〉 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | c0ex | ⊢ 0 ∈ V | |
| 2 | 1 | tpid1 | ⊢ 0 ∈ { 0 , 1 , 2 } |
| 3 | fzo0to3tp | ⊢ ( 0 ..^ 3 ) = { 0 , 1 , 2 } | |
| 4 | 2 3 | eleqtrri | ⊢ 0 ∈ ( 0 ..^ 3 ) |
| 5 | oveq2 | ⊢ ( ( ♯ ‘ 𝑊 ) = 3 → ( 0 ..^ ( ♯ ‘ 𝑊 ) ) = ( 0 ..^ 3 ) ) | |
| 6 | 4 5 | eleqtrrid | ⊢ ( ( ♯ ‘ 𝑊 ) = 3 → 0 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 7 | wrdsymbcl | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 0 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 ‘ 0 ) ∈ 𝑉 ) | |
| 8 | 6 7 | sylan2 | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 3 ) → ( 𝑊 ‘ 0 ) ∈ 𝑉 ) |
| 9 | 1ex | ⊢ 1 ∈ V | |
| 10 | 9 | tpid2 | ⊢ 1 ∈ { 0 , 1 , 2 } |
| 11 | 10 3 | eleqtrri | ⊢ 1 ∈ ( 0 ..^ 3 ) |
| 12 | 11 5 | eleqtrrid | ⊢ ( ( ♯ ‘ 𝑊 ) = 3 → 1 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 13 | wrdsymbcl | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 1 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 ‘ 1 ) ∈ 𝑉 ) | |
| 14 | 12 13 | sylan2 | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 3 ) → ( 𝑊 ‘ 1 ) ∈ 𝑉 ) |
| 15 | 2ex | ⊢ 2 ∈ V | |
| 16 | 15 | tpid3 | ⊢ 2 ∈ { 0 , 1 , 2 } |
| 17 | 16 3 | eleqtrri | ⊢ 2 ∈ ( 0 ..^ 3 ) |
| 18 | 17 5 | eleqtrrid | ⊢ ( ( ♯ ‘ 𝑊 ) = 3 → 2 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 19 | wrdsymbcl | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 2 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 ‘ 2 ) ∈ 𝑉 ) | |
| 20 | 18 19 | sylan2 | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 3 ) → ( 𝑊 ‘ 2 ) ∈ 𝑉 ) |
| 21 | simpr | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 3 ) → ( ♯ ‘ 𝑊 ) = 3 ) | |
| 22 | eqid | ⊢ ( 𝑊 ‘ 0 ) = ( 𝑊 ‘ 0 ) | |
| 23 | eqid | ⊢ ( 𝑊 ‘ 1 ) = ( 𝑊 ‘ 1 ) | |
| 24 | eqid | ⊢ ( 𝑊 ‘ 2 ) = ( 𝑊 ‘ 2 ) | |
| 25 | 22 23 24 | 3pm3.2i | ⊢ ( ( 𝑊 ‘ 0 ) = ( 𝑊 ‘ 0 ) ∧ ( 𝑊 ‘ 1 ) = ( 𝑊 ‘ 1 ) ∧ ( 𝑊 ‘ 2 ) = ( 𝑊 ‘ 2 ) ) |
| 26 | 21 25 | jctir | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 3 ) → ( ( ♯ ‘ 𝑊 ) = 3 ∧ ( ( 𝑊 ‘ 0 ) = ( 𝑊 ‘ 0 ) ∧ ( 𝑊 ‘ 1 ) = ( 𝑊 ‘ 1 ) ∧ ( 𝑊 ‘ 2 ) = ( 𝑊 ‘ 2 ) ) ) ) |
| 27 | eqeq2 | ⊢ ( 𝑎 = ( 𝑊 ‘ 0 ) → ( ( 𝑊 ‘ 0 ) = 𝑎 ↔ ( 𝑊 ‘ 0 ) = ( 𝑊 ‘ 0 ) ) ) | |
| 28 | 27 | 3anbi1d | ⊢ ( 𝑎 = ( 𝑊 ‘ 0 ) → ( ( ( 𝑊 ‘ 0 ) = 𝑎 ∧ ( 𝑊 ‘ 1 ) = 𝑏 ∧ ( 𝑊 ‘ 2 ) = 𝑐 ) ↔ ( ( 𝑊 ‘ 0 ) = ( 𝑊 ‘ 0 ) ∧ ( 𝑊 ‘ 1 ) = 𝑏 ∧ ( 𝑊 ‘ 2 ) = 𝑐 ) ) ) |
| 29 | 28 | anbi2d | ⊢ ( 𝑎 = ( 𝑊 ‘ 0 ) → ( ( ( ♯ ‘ 𝑊 ) = 3 ∧ ( ( 𝑊 ‘ 0 ) = 𝑎 ∧ ( 𝑊 ‘ 1 ) = 𝑏 ∧ ( 𝑊 ‘ 2 ) = 𝑐 ) ) ↔ ( ( ♯ ‘ 𝑊 ) = 3 ∧ ( ( 𝑊 ‘ 0 ) = ( 𝑊 ‘ 0 ) ∧ ( 𝑊 ‘ 1 ) = 𝑏 ∧ ( 𝑊 ‘ 2 ) = 𝑐 ) ) ) ) |
| 30 | eqeq2 | ⊢ ( 𝑏 = ( 𝑊 ‘ 1 ) → ( ( 𝑊 ‘ 1 ) = 𝑏 ↔ ( 𝑊 ‘ 1 ) = ( 𝑊 ‘ 1 ) ) ) | |
| 31 | 30 | 3anbi2d | ⊢ ( 𝑏 = ( 𝑊 ‘ 1 ) → ( ( ( 𝑊 ‘ 0 ) = ( 𝑊 ‘ 0 ) ∧ ( 𝑊 ‘ 1 ) = 𝑏 ∧ ( 𝑊 ‘ 2 ) = 𝑐 ) ↔ ( ( 𝑊 ‘ 0 ) = ( 𝑊 ‘ 0 ) ∧ ( 𝑊 ‘ 1 ) = ( 𝑊 ‘ 1 ) ∧ ( 𝑊 ‘ 2 ) = 𝑐 ) ) ) |
| 32 | 31 | anbi2d | ⊢ ( 𝑏 = ( 𝑊 ‘ 1 ) → ( ( ( ♯ ‘ 𝑊 ) = 3 ∧ ( ( 𝑊 ‘ 0 ) = ( 𝑊 ‘ 0 ) ∧ ( 𝑊 ‘ 1 ) = 𝑏 ∧ ( 𝑊 ‘ 2 ) = 𝑐 ) ) ↔ ( ( ♯ ‘ 𝑊 ) = 3 ∧ ( ( 𝑊 ‘ 0 ) = ( 𝑊 ‘ 0 ) ∧ ( 𝑊 ‘ 1 ) = ( 𝑊 ‘ 1 ) ∧ ( 𝑊 ‘ 2 ) = 𝑐 ) ) ) ) |
| 33 | eqeq2 | ⊢ ( 𝑐 = ( 𝑊 ‘ 2 ) → ( ( 𝑊 ‘ 2 ) = 𝑐 ↔ ( 𝑊 ‘ 2 ) = ( 𝑊 ‘ 2 ) ) ) | |
| 34 | 33 | 3anbi3d | ⊢ ( 𝑐 = ( 𝑊 ‘ 2 ) → ( ( ( 𝑊 ‘ 0 ) = ( 𝑊 ‘ 0 ) ∧ ( 𝑊 ‘ 1 ) = ( 𝑊 ‘ 1 ) ∧ ( 𝑊 ‘ 2 ) = 𝑐 ) ↔ ( ( 𝑊 ‘ 0 ) = ( 𝑊 ‘ 0 ) ∧ ( 𝑊 ‘ 1 ) = ( 𝑊 ‘ 1 ) ∧ ( 𝑊 ‘ 2 ) = ( 𝑊 ‘ 2 ) ) ) ) |
| 35 | 34 | anbi2d | ⊢ ( 𝑐 = ( 𝑊 ‘ 2 ) → ( ( ( ♯ ‘ 𝑊 ) = 3 ∧ ( ( 𝑊 ‘ 0 ) = ( 𝑊 ‘ 0 ) ∧ ( 𝑊 ‘ 1 ) = ( 𝑊 ‘ 1 ) ∧ ( 𝑊 ‘ 2 ) = 𝑐 ) ) ↔ ( ( ♯ ‘ 𝑊 ) = 3 ∧ ( ( 𝑊 ‘ 0 ) = ( 𝑊 ‘ 0 ) ∧ ( 𝑊 ‘ 1 ) = ( 𝑊 ‘ 1 ) ∧ ( 𝑊 ‘ 2 ) = ( 𝑊 ‘ 2 ) ) ) ) ) |
| 36 | 29 32 35 | rspc3ev | ⊢ ( ( ( ( 𝑊 ‘ 0 ) ∈ 𝑉 ∧ ( 𝑊 ‘ 1 ) ∈ 𝑉 ∧ ( 𝑊 ‘ 2 ) ∈ 𝑉 ) ∧ ( ( ♯ ‘ 𝑊 ) = 3 ∧ ( ( 𝑊 ‘ 0 ) = ( 𝑊 ‘ 0 ) ∧ ( 𝑊 ‘ 1 ) = ( 𝑊 ‘ 1 ) ∧ ( 𝑊 ‘ 2 ) = ( 𝑊 ‘ 2 ) ) ) ) → ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 ∃ 𝑐 ∈ 𝑉 ( ( ♯ ‘ 𝑊 ) = 3 ∧ ( ( 𝑊 ‘ 0 ) = 𝑎 ∧ ( 𝑊 ‘ 1 ) = 𝑏 ∧ ( 𝑊 ‘ 2 ) = 𝑐 ) ) ) |
| 37 | 8 14 20 26 36 | syl31anc | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 3 ) → ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 ∃ 𝑐 ∈ 𝑉 ( ( ♯ ‘ 𝑊 ) = 3 ∧ ( ( 𝑊 ‘ 0 ) = 𝑎 ∧ ( 𝑊 ‘ 1 ) = 𝑏 ∧ ( 𝑊 ‘ 2 ) = 𝑐 ) ) ) |
| 38 | df-3an | ⊢ ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ↔ ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ 𝑐 ∈ 𝑉 ) ) | |
| 39 | eqwrds3 | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ) → ( 𝑊 = 〈“ 𝑎 𝑏 𝑐 ”〉 ↔ ( ( ♯ ‘ 𝑊 ) = 3 ∧ ( ( 𝑊 ‘ 0 ) = 𝑎 ∧ ( 𝑊 ‘ 1 ) = 𝑏 ∧ ( 𝑊 ‘ 2 ) = 𝑐 ) ) ) ) | |
| 40 | 39 | ex | ⊢ ( 𝑊 ∈ Word 𝑉 → ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) → ( 𝑊 = 〈“ 𝑎 𝑏 𝑐 ”〉 ↔ ( ( ♯ ‘ 𝑊 ) = 3 ∧ ( ( 𝑊 ‘ 0 ) = 𝑎 ∧ ( 𝑊 ‘ 1 ) = 𝑏 ∧ ( 𝑊 ‘ 2 ) = 𝑐 ) ) ) ) ) |
| 41 | 38 40 | biimtrrid | ⊢ ( 𝑊 ∈ Word 𝑉 → ( ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ 𝑐 ∈ 𝑉 ) → ( 𝑊 = 〈“ 𝑎 𝑏 𝑐 ”〉 ↔ ( ( ♯ ‘ 𝑊 ) = 3 ∧ ( ( 𝑊 ‘ 0 ) = 𝑎 ∧ ( 𝑊 ‘ 1 ) = 𝑏 ∧ ( 𝑊 ‘ 2 ) = 𝑐 ) ) ) ) ) |
| 42 | 41 | expd | ⊢ ( 𝑊 ∈ Word 𝑉 → ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) → ( 𝑐 ∈ 𝑉 → ( 𝑊 = 〈“ 𝑎 𝑏 𝑐 ”〉 ↔ ( ( ♯ ‘ 𝑊 ) = 3 ∧ ( ( 𝑊 ‘ 0 ) = 𝑎 ∧ ( 𝑊 ‘ 1 ) = 𝑏 ∧ ( 𝑊 ‘ 2 ) = 𝑐 ) ) ) ) ) ) |
| 43 | 42 | adantr | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 3 ) → ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) → ( 𝑐 ∈ 𝑉 → ( 𝑊 = 〈“ 𝑎 𝑏 𝑐 ”〉 ↔ ( ( ♯ ‘ 𝑊 ) = 3 ∧ ( ( 𝑊 ‘ 0 ) = 𝑎 ∧ ( 𝑊 ‘ 1 ) = 𝑏 ∧ ( 𝑊 ‘ 2 ) = 𝑐 ) ) ) ) ) ) |
| 44 | 43 | imp31 | ⊢ ( ( ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 3 ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ 𝑐 ∈ 𝑉 ) → ( 𝑊 = 〈“ 𝑎 𝑏 𝑐 ”〉 ↔ ( ( ♯ ‘ 𝑊 ) = 3 ∧ ( ( 𝑊 ‘ 0 ) = 𝑎 ∧ ( 𝑊 ‘ 1 ) = 𝑏 ∧ ( 𝑊 ‘ 2 ) = 𝑐 ) ) ) ) |
| 45 | 44 | rexbidva | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 3 ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → ( ∃ 𝑐 ∈ 𝑉 𝑊 = 〈“ 𝑎 𝑏 𝑐 ”〉 ↔ ∃ 𝑐 ∈ 𝑉 ( ( ♯ ‘ 𝑊 ) = 3 ∧ ( ( 𝑊 ‘ 0 ) = 𝑎 ∧ ( 𝑊 ‘ 1 ) = 𝑏 ∧ ( 𝑊 ‘ 2 ) = 𝑐 ) ) ) ) |
| 46 | 45 | 2rexbidva | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 3 ) → ( ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 ∃ 𝑐 ∈ 𝑉 𝑊 = 〈“ 𝑎 𝑏 𝑐 ”〉 ↔ ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 ∃ 𝑐 ∈ 𝑉 ( ( ♯ ‘ 𝑊 ) = 3 ∧ ( ( 𝑊 ‘ 0 ) = 𝑎 ∧ ( 𝑊 ‘ 1 ) = 𝑏 ∧ ( 𝑊 ‘ 2 ) = 𝑐 ) ) ) ) |
| 47 | 37 46 | mpbird | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 3 ) → ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 ∃ 𝑐 ∈ 𝑉 𝑊 = 〈“ 𝑎 𝑏 𝑐 ”〉 ) |
| 48 | s3cl | ⊢ ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) → 〈“ 𝑎 𝑏 𝑐 ”〉 ∈ Word 𝑉 ) | |
| 49 | 48 | ad4ant123 | ⊢ ( ( ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ 𝑐 ∈ 𝑉 ) ∧ 𝑊 = 〈“ 𝑎 𝑏 𝑐 ”〉 ) → 〈“ 𝑎 𝑏 𝑐 ”〉 ∈ Word 𝑉 ) |
| 50 | s3len | ⊢ ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 ) = 3 | |
| 51 | 49 50 | jctir | ⊢ ( ( ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ 𝑐 ∈ 𝑉 ) ∧ 𝑊 = 〈“ 𝑎 𝑏 𝑐 ”〉 ) → ( 〈“ 𝑎 𝑏 𝑐 ”〉 ∈ Word 𝑉 ∧ ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 ) = 3 ) ) |
| 52 | eleq1 | ⊢ ( 𝑊 = 〈“ 𝑎 𝑏 𝑐 ”〉 → ( 𝑊 ∈ Word 𝑉 ↔ 〈“ 𝑎 𝑏 𝑐 ”〉 ∈ Word 𝑉 ) ) | |
| 53 | fveqeq2 | ⊢ ( 𝑊 = 〈“ 𝑎 𝑏 𝑐 ”〉 → ( ( ♯ ‘ 𝑊 ) = 3 ↔ ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 ) = 3 ) ) | |
| 54 | 52 53 | anbi12d | ⊢ ( 𝑊 = 〈“ 𝑎 𝑏 𝑐 ”〉 → ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 3 ) ↔ ( 〈“ 𝑎 𝑏 𝑐 ”〉 ∈ Word 𝑉 ∧ ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 ) = 3 ) ) ) |
| 55 | 54 | adantl | ⊢ ( ( ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ 𝑐 ∈ 𝑉 ) ∧ 𝑊 = 〈“ 𝑎 𝑏 𝑐 ”〉 ) → ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 3 ) ↔ ( 〈“ 𝑎 𝑏 𝑐 ”〉 ∈ Word 𝑉 ∧ ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 ) = 3 ) ) ) |
| 56 | 51 55 | mpbird | ⊢ ( ( ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ 𝑐 ∈ 𝑉 ) ∧ 𝑊 = 〈“ 𝑎 𝑏 𝑐 ”〉 ) → ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 3 ) ) |
| 57 | 56 | rexlimdva2 | ⊢ ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) → ( ∃ 𝑐 ∈ 𝑉 𝑊 = 〈“ 𝑎 𝑏 𝑐 ”〉 → ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 3 ) ) ) |
| 58 | 57 | rexlimivv | ⊢ ( ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 ∃ 𝑐 ∈ 𝑉 𝑊 = 〈“ 𝑎 𝑏 𝑐 ”〉 → ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 3 ) ) |
| 59 | 47 58 | impbii | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 3 ) ↔ ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 ∃ 𝑐 ∈ 𝑉 𝑊 = 〈“ 𝑎 𝑏 𝑐 ”〉 ) |